tensorflow(五):CNN实现手写体识别MNIST

一、卷积神经网络

   1) 我们从上图可以看到这里有6个特征平面(这里不应该称为卷积核,卷积核是滑动窗口,通过卷积核提取特征的结果叫特 征平面),得到的每个特征平面使用的一个5x5的卷积核(这里说明窗口滑动的权值就是卷积核的内容,这里需要注意的是特征平面有6个说明有6个不同的卷积核,因此每个特征平面所使用的权值都是一样的,这样就得到了特征平面。那么特征平面有多少神经元呢?如下图,32x32通过一个5x5的卷积核运算,根据局部连接和平滑,需要每次移动1,因此从左移动到右时是28,因此特征平面是28x28的,即每个特征平面有28x28个神经元。如下图,权值共享就是右边的神经元的权值都是w,这里大家需要好好理解,还是在解释一下,6个特征平面对应6个不同的卷积核或者6个滤波器,每个滤波器的参数值也就是权值都是一样的,下图就是卷积对应的一个特征平面,这样的平面有6个,即卷积层有6个特征平面。

 

      2)  SAME方式 padding:  可以看到上图在原始图像的边缘用了像素填充,像素填充后的尺寸变为8×88×8,卷积核的大小为3×33×3,步长为1,经过卷积操作之后得到的feature map的尺寸是 (8−3+1)×(8−3+1)=6×6(8−3+1)×(8−3+1)=6×6,feature map的尺寸和原始输入图像的尺寸是一样的。这样就解决了feature map尺寸越来越小的问题。同时从图中可以看出,卷积核对边缘信息的处理不止处理了一次,对边缘信息的提取更加充分了。

二、代码 

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
#每批次的大小
batch_size = 100
#计算一共有多少批次
n_batch = mnist.train.num_examples // batch_size
#初始化权值
def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1) #生成截断的正态分布
    return tf.Variable(initial)
#初始化偏执值
def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)
#卷积层
def conv2d(x, W):
    return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')
#池化层
def max_pool_2x2(x):
    return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

with tf.name_scope("input"):
    #定义两个placeholder
    x=tf.placeholder(tf.float32,[None,784]) #28*28
    y=tf.placeholder(tf.float32,[None,10])
    #改变x的格式转为4D的向量[batch, in_height, in_width, in_channels]
    x_image = tf.reshape(x,[-1,28,28,1])

with tf.name_scope("conv1"):
    #初始化第一个卷积层的权值和偏置
    W_conv1=weight_variable([5,5,1,32]) #5*5的采样窗口,32个卷积核从一个平面抽取特征
    b_conv1=bias_variable([32]) #每一个卷积核一个偏执值
    #把x_image和权重向量进行卷积,再加上偏执值,然后应用于relu激活函数
    h_conv1=tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)

with tf.name_scope("pool1"):
    h_pool1=max_pool_2x2(h_conv1) #进行max-pooling

with tf.name_scope("conv2"):
    #初始化第二个卷积层的权重和偏置
    W_conv2=weight_variable([5,5,32,64]) #5*5的采样窗口,64个卷积核从32个平面抽取特征
    b_conv2=bias_variable([64]) #每一个卷积核一个偏执值
    #把h_pool1和权值向量进行卷积,再加上偏执值,然后应用于relu激活函数
    h_conv2=tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2)

with tf.name_scope("pool2"):
    h_pool2=max_pool_2x2(h_conv2)#进行maxpooling
#28*28的图像第一次卷积后还是28*28,第一次池化后变成14*14,最后得到32张14*14的平面
#第二次卷积后为14*14,第二次池化后为7*7,最后得到64张7*7的平面
#经过上面的操作后得到64张7*7的平面
#初始化第一个全连接的权值
with tf.name_scope("fulllayer"):
    W_fc1=weight_variable([7*7*64,100]) #上一层有7*7*64个神经元,全连接层有1024个神经元
    b_fc1=bias_variable([100]) #1024个节点
    #把池化层2的输出扁平化为1维
    h_pool2_flat=tf.reshape(h_pool2,[-1,7*7*64])
    #求第一个全连接层的输出
    h_fc1=tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    #keep_prob用来表示神经元的输出概率
    keep_prob=tf.placeholder(tf.float32)
    h_fc1_drop=tf.nn.dropout(h_fc1,keep_prob)

with tf.name_scope("output"):
    #初始化第二个全连接层
    W_fc2=weight_variable([100,10])
    b_fc2=bias_variable([10])
    #计算输出
    prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2)+b_fc2)

with tf.name_scope("loss"):
    #交叉墒代价函数
    cross_entropy=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
    tf.summary.scalar("cross_entropy", cross_entropy)
with tf.name_scope("train"):
    #使用AdamOptimizier进行优化
    train_step=tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

with tf.name_scope("accurary"):
    #结果存放在一个布尔列表中
    correct_prediction=tf.equal(tf.argmax(prediction,1), tf.argmax(y,1)) #argmax返回一维张量中最大的值所在的位置
    #求准确率
    accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
    tf.summary.scalar("accurary", accuracy)

merged = tf.summary.merge_all()
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    writer = tf.summary.FileWriter("logs/", sess.graph)
    for epoch in range(21):
        for batch in range(n_batch):
            batch_xs,batch_ys=mnist.train.next_batch(batch_size)
            _summary, _ = sess.run([merged, train_step],feed_dict={x:batch_xs,y:batch_ys,keep_prob:0.7})
        writer.add_summary(_summary, epoch)
        acc=sess.run(accuracy,feed_dict={x:mnist.test.images, y:mnist.test.labels,keep_prob:1.0})
        print ("Iter "+str(epoch) + ", Testing Accuracy= " +str(acc))

三、实验结果

 

Iter 0, Testing Accuracy= 0.9322
Iter 1, Testing Accuracy= 0.9551
Iter 2, Testing Accuracy= 0.9607
Iter 3, Testing Accuracy= 0.9686
Iter 4, Testing Accuracy= 0.9732
Iter 5, Testing Accuracy= 0.9751
Iter 6, Testing Accuracy= 0.9776
Iter 7, Testing Accuracy= 0.9796
Iter 8, Testing Accuracy= 0.9814
Iter 9, Testing Accuracy= 0.9833
Iter 10, Testing Accuracy= 0.9844
Iter 11, Testing Accuracy= 0.9852
Iter 12, Testing Accuracy= 0.9855
Iter 13, Testing Accuracy= 0.9849
Iter 14, Testing Accuracy= 0.9855
Iter 15, Testing Accuracy= 0.9869
Iter 16, Testing Accuracy= 0.9875
Iter 17, Testing Accuracy= 0.9884
Iter 18, Testing Accuracy= 0.9881
Iter 19, Testing Accuracy= 0.9883
Iter 20, Testing Accuracy= 0.9889

Process finished with exit code 0

 四、网络结构

 

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值