Generating wikipedia by summarizing long sequences笔记

Generating wikipedia by summarizing long sequences

we introduce a decoder-only architecture that can scalably attend to very long sequences

一、任务定义

我们将英文维基百科视为一个多文档摘要的监督机器学习任务

  • input :维基百科主题(文章标题)、非维基百科参考文档集合组成
  • output:维基百科文章文本

二、相关工作

input output

作者的最大,说明作者可以输入很多句子,生成很多的句子

所以输入长的短的语料都行, 说明适应性最好?

ROUGE-1 recall score

评价的是重复性??

有的摘要是wiki-clone,即从输入里面直接复制句子。

作者的不是这样,是有转述的。

三、语料库

来源有2:

  • 维基百科文章引用的那些链接。
  • 使用文章部分标题作为查询,从谷歌搜索引擎抓取搜索结果。对于每个查询,我们收集10个结果页面。

四、方法与模型

第一阶段 EXTRACTIVE STAGE

我们首先使用提取摘要粗选输入的一个子集

第二阶段 ABSTRACTIVE STAGE

包括训练一个生成维基百科文本的抽象模型,同时对这种提取进行条件设置。

这个过程是受人类写摘要时的动作的启发

因为人类的总结方式就是:先把重点内容划线,再根据自己的规则总结

模型

LSTM+Attention

Decoder:Transformer+多层attention机制(LMLML)

五、实验结果

在生成维基百科引语的实验中,我们主要从四个方面进行改变:

1.提取方法:SumBasic, TextRank, tf-idf, identity, cheating extractor

2.输入语料库:引文、搜索结果、组合

3.抽象模型输入长度,L:我们尝试100到11000之间的值

4.抽象模型架构:seq2seq-att, T-ED, T-D, T-DMCA

结果:

  • 一般用tf-idf提取
  • 组合的语料最好
  • seq2seq-attention作为基准在这个任务上比Transformer架构做得很差
  • L增大,T-ED结构的性能一直在提高,直到L = 500 - 1000的最佳值,而在L = 2000时无法学习。
  • 会出现自动翻译现象

比较:模板的方式

ROUGE-1应该模板会表现的更好,因为模板不会在input里面出现,摘要的话,只需要从input里面选一些词填入模板形成output,所以output不会与input重合很多,而本文的方法会从input里面挑成段的文本来摘,所以会重复。

疑惑

EXTRACTIVE STAGE的cheating方案是什么

作者是如何与2009年的那篇论文比较的,感觉有点含糊

输入的特殊字符是如何处理的(Figure 4 举的例子里有&符号)

答:embedding

为啥作者16GB的 GPU设备可以训练L = 11000这么大的模型

答:这个设备淘宝4w,应该还挺厉害的

Transformer以及几种attention机制

答:有说法是,Transformer是可以完全替代RNN的

音乐转换器是一种能够生成具有长期结构的音乐的技术。传统上,音乐生成模型主要依赖于自回归模型,即根据前面的音符预测下一个音符。这种方法很难捕捉到音乐的长期结构,因为它只关注于当前音符与前面音符的关系。 然而,音乐转换器采用了一种全新的方法。它将音乐的生成问题转化为基于自注意力机制的序列到序列问题。自注意力机制允许模型在生成每个音符时考虑到整个音乐序列的信息,而不仅仅是前面的音符。 此外,音乐转换器还引入了一种基于位置编码和层归一化的技术,来增强模型对音乐序列的表征能力和泛化能力。位置编码在序列中为每个位置分配一个向量,以提供位置信息。而层归一化则可以确保模型的每一层都保持相似的输出分布,从而提高模型的训练稳定性和生成效果。 通过这些创新技术的运用,音乐转换器能够更好地捕捉到音乐的长期结构。它可以生成具有旋律、和声和节奏等多个音乐要素的音乐片段,并且这些片段之间能够形成完整的结构,如引言、主题、发展和回旋等。 总之,音乐转换器是一种利用自注意力机制、位置编码和层归一化等技术生成具有长期结构的音乐的方法。它的创新之处在于能够全局考虑音乐序列的信息,并能够生成具有完整结构的音乐片段。这使得音乐转换器成为一个有潜力的工具,在音乐创作和生成领域有着广阔的应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值