Generating Sequences With Recurrent Neural Networks(1)

本文探讨了LSTM循环神经网络在生成复杂序列中的应用,包括文本和手写合成。通过允许网络预测序列,它可以创造高度逼真的内容。LSTM通过其记忆能力解决了标准RNN的长期依赖问题,适用于生成远程结构的序列。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

本文展示了LSTM循环神经网络如何能通过预测数据点来生成复杂序列。 该方法针对文本(其中数据是离散的)和在线手写(数据是实值的)进行了演示。 然后通过允许网络对文本序列进行预测来扩展到手写合成。 所产生的系统能够以各种各样的风格产生高度逼真的草书手写。

introduction

循环神经网络(RNN)是一类丰富的动态模型,已被用于在音乐,文本和运动数据的捕获。可以通过一次处理实际数据序列来一步一步地对RNN进行序列生成的训练,并预测接下来的内容。假设预测是概率性的,可以从训练网络通过从网络的输出分布迭代地采样来生成新的序列,然后在下一步中将样本作为输入。换句话说,让网络将其发明看作是真实的,就像一个人在做梦。 虽然网络本身是确定性的,但采摘样本注入的随机性会导致序列分布。 这种分配是有条件的,因为网络的内部状态,因此其预测分布取决于先前的输入。


在这个意义上,RNN是“模糊的”,他们不使用训练数据中的精确模板进行预测,而是像其他神经网络一样,使用他们的内部表示在训练示例之间执行高维插值。这将它们与n-gram模型和压缩算法(如部分匹配预测)区分开来,其预测分布是通过计算最近历史和训练集之间的精确匹配来确定的。本文样本中立即显现的结果是RNN(与基于模板的算法不同)以复杂的方式合成和重构训练数据,并且很少生成相同的事情两次。 此外,模糊预测不会受到维度的诅咒的影响,因此,与真实匹配相比,建模实值或多变量数据更好。


原则上,足够大的RNN应该足以产生任意复杂的序列。然而,在实践中,标准RNN无法存储关于过去输入的信息很长时间。除了能够模

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值