给你一个
n x n
的二进制矩阵grid
中,返回矩阵中最短 畅通路径 的长度。如果不存在这样的路径,返回-1
。二进制矩阵中的 畅通路径 是一条从 左上角 单元格(即,
(0, 0)
)到 右下角 单元格(即,(n - 1, n - 1)
)的路径,该路径同时满足下述要求:
- 路径途经的所有单元格的值都是
0
。- 路径中所有相邻的单元格应当在 8 个方向之一 上连通(即,相邻两单元之间彼此不同且共享一条边或者一个角)。
畅通路径的长度 是该路径途经的单元格总数。
示例 1:
输入:grid = [[0,1],[1,0]] 输出:2示例 2:
输入:grid = [[0,0,0],[1,1,0],[1,1,0]] 输出:4示例 3:
输入:grid = [[1,0,0],[1,1,0],[1,1,0]] 输出:-1
/**
* @param {number[][]} grid
* @return {number}
*/
var shortestPathBinaryMatrix = function (grid) {
const m = grid.length - 1;
const n = grid[0].length - 1;
if (grid[0][0] === 1 || grid[m][n] === 1) {
return -1;
}
if (m === 0 && n === 0 && grid[0][0] === 0) {
return 1;
}
let queue = [[0, 0]];
let level = 1;
const direction = [
[-1, 1],
[0, 1],
[1, 1],
[1, 0],
[1, -1],
[-1, 0],
[0, -1],
[-1, -1],
];
while (queue.length) {
let queueLength = queue.length;
while (--queueLength >= 0) {
const [x, y] = queue.shift();
for (let i = 0; i < direction.length; i++) {
const newX = x + direction[i][0];
const newY = y + direction[i][1];
if (
newX < 0 ||
newY < 0 ||
newX > m ||
newY > m ||
grid[newX][newY] === 1
) {
continue;
}
if (newX === m && newY === n) {
return level + 1;
}
grid[newX][newY] = 1;
queue.push([newX, newY]);
}
}
level++;
}
return -1;
};