深度学习之池化层

注:借鉴整理,仅供自学,侵删

对输入的特征图进行压缩,一方面使特征图变小,简化网络计算复杂度;一方面进行特征压缩,提取主要特征。
池化层往往在卷积层后面,通过池化来降低卷积层输出的特征向量,同时改善结果(不易出现过拟合)。

评估特征提取的误差主要来自两个方面:(1)邻域大小受限造成的估计值方差增大,average能减小这种误差。(2)卷积层参数误差造成估计均值的偏移,max能减小这种误差。也就是说,average对背景保留更好,max对纹理提取更好。

填充:不对称填充≠2P

池化:改变宽高不改变深度
在这里插入图片描述

1 最大池化

平移不变性

2 平均池化

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页