深度学习经典论文(十一)YOLOv5

本文详细介绍了YOLO系列目标检测模型的演进,特别是YOLOv4和YOLOv5的创新点。YOLOv4引入了Mosaic数据增强、CSPDarknet53网络、Mish激活函数等技术,而YOLOv5则在输入端采用了自适应锚框计算和Mosaic数据增强,并使用Focus结构和GIOU_Loss。此外,文章还探讨了目标检测领域的关键技巧,如自适应图片缩放、FPN+PAN结构等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

注:借鉴整理,仅供自学,侵删

自适应锚框计算,无需重新聚类anchor

结构图

一些小tricks讲解

深入浅出Yolo系列之Yolov3&Yolov4&Yolov5核心基础知识完整讲解

深入浅出Yolo系列之Yolov5核心基础知识完整讲解

深度学习_目标检测_YOLOv5详解

YOLOv5代码详解(yolov5l.yaml部分)

YOLOv5代码详解(common.py部分)

YOLOv5代码详解(test.py部分)

YOLOv5代码详解(train.py部分)

进击的后浪yolov5深度可视化解析

Mosaic数据增强方法
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

  1. Yolov4在Yolov3的基础上进行了很多的创新:
    输入端采用mosaic数据增强
    Backbone上采用CSPDarknet53、Mish激活函数、Dropblock等方式
    Neck中采用SPP、FPN+PAN的结构
    输出端则采用CIOU_Loss、DIOU_nms操作
  2. Yolov5
    输入端:Mosaic数据增强、自适应锚框计算、自适应图片缩放
    Backbone:Focus结构,CSP结构
    Neck:FPN+PAN结构
    Prediction:GIOU_Loss
<think>好的,用户想查找YOLOv5论文或技术文档。首先,我需要确认YOLOv5是否有官方论文。记得YOLOv5最初是在GitHub上发布的,可能没有正式的论文。用户提到的引用[1]和[3]中有相关资源,特别是引用[1]提到了YOLOv1到YOLOv5论文解读资源下载,项目地址是https://gitcode.com/Open-source-documentation-tutorial/2a843。这可能是一个重要的来源。 接下来,用户可能需要官方技术文档或详细的实现说明。YOLOv5的GitHub仓库(https://github.com/ultralytics/yolov5)通常包含详细的文档、使用指南和预训练模型。应该建议用户访问这里获取最新信息。 另外,引用[3]提到了一个SwinTransformer-YOLOv5的GitHub仓库,可能包含结合其他技术的实现,但可能不是原版YOLOv5的文档。需要区分清楚,避免混淆。 还要考虑到用户可能对YOLOv5的背景不太清楚,比如它是由Ultralytics公司维护的,而非官方论文发布。所以需要解释清楚,并建议替代资源,如技术报告、GitHub文档和社区解读。 最后,生成相关问题时要围绕YOLOv5的资源获取、技术细节、与其他版本的比较,以及应用场景等方面,帮助用户进一步探索。</think>### 关于YOLOv5论文及技术文档获取 #### 1. **YOLOv5的官方论文情况** YOLOv5最初由Ultralytics团队在GitHub开源,但**并未发布正式论文**。其核心实现基于YOLOv3/YOLOv4的改进,主要通过代码和文档说明技术细节。若需了解其原理,建议结合以下资源: - **GitHub仓库文档**:包含模型结构、训练配置和性能指标[^3] - **技术博客和社区解读**:如引用[1]提到的YOLOv1-YOLOv5论文解读资源包(项目地址:[https://gitcode.com/Open-source-documentation-tutorial/2a843](https://gitcode.com/Open-source-documentation-tutorial/2a843))[^1] #### 2. **技术文档获取途径** - **官方GitHub仓库**:访问 [https://github.com/ultralytics/yolov5](https://github.com/ultralytics/yolov5) 可查看完整的代码、预训练模型和详细使用说明 - **综合技术报告**:部分研究者整理的YOLOv5技术分析文档(如引用[1]中的资源包包含相关解读) #### 3. **替代方案:YOLO系列论文参考** 若需学术引用,可参考: - **YOLOv4论文**:对比分析YOLOv5的改进方向 - **YOLOv7论文**:了解后续版本的发展(如引用[2]提到的背景更新)[^2] ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值