最短路径

本文介绍了最短路径问题,详细讲解了包括Bellman-Ford、Dijkstra、SPFA和Floyd在内的四种算法,分析了它们的时间复杂度和适用场景。
摘要由CSDN通过智能技术生成

最短路径

最短路径的四种算法

bellman_ford
O(n*m)的时间复杂度
从一个点到另一个点,最多只有n-1步
把整张图更新n-1次

const int inf=0x3f3f3f3f;
const int M=10000;
struct node{
   
  int from,to,v;
}edge[M*10];
int dis[M];
int main(){
   
  int n,m;
  cin>>n>>m;
  memset(dis,inf,sizeof(dis));
  for(int i=1;i<=m;i++)
  {
   
    scanf("%d %d %d",&edge.from,&edge.to,&edge.v);
  }
  dis[1]=0;//最短路径,1-1的距离为0;
  for(int i=1;i<n;i++)//一个无向图,n个定点只需要n-1条边进行连接,所以只需要枚举n个定点即可
  {
   
    for(int j=1;j<=m;j++)//把每条边都拿出来,起点更新终点
    {
   
      int a=edge[j].from;
      int b=edge[j].to;
      int c=edge[j].v;
      if(dis[b]>dis[a]+c)//不断更新边
      {
   //第一次只能把一旁边的边枚举一下,然后找到最短的继续更新
        dis[b]=dis[a]+c;
      }//核心思想:每次一轮把起点更新为终点
    }
  }
  return 0;
}

Dijkstra
邻接矩阵O(n^2)//70分代码

//每次(n-1)用 离起点最近的点 去更新其他的点
//dis[i]最小的值
const int M=1000000;
const int inf=0x3f3f3f3f;
int dis[M],mp[M][M];//邻接矩阵
bool mark[M];
void Dijkstra(){
   O(n^2)
  memset(dis,inf,sizeof(dis));
  memset(mark,0,sizeof(mark));
  dis[1]=0;
  for(int i=1;i<n;i++)
  {
   
    int k=-1,mi=inf;
    for(int j=1;j<=n;j++)//每次从未使用过的点中找一个最小值
    {
   
      if(!mark[j]&&dis[j]<mi)
      {
   
        mi=dis[j];
        k=j
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值