最短路径
最短路径的四种算法
bellman_ford
O(n*m)的时间复杂度
从一个点到另一个点,最多只有n-1步
把整张图更新n-1次
const int inf=0x3f3f3f3f;
const int M=10000;
struct node{
int from,to,v;
}edge[M*10];
int dis[M];
int main(){
int n,m;
cin>>n>>m;
memset(dis,inf,sizeof(dis));
for(int i=1;i<=m;i++)
{
scanf("%d %d %d",&edge.from,&edge.to,&edge.v);
}
dis[1]=0;//最短路径,1-1的距离为0;
for(int i=1;i<n;i++)//一个无向图,n个定点只需要n-1条边进行连接,所以只需要枚举n个定点即可
{
for(int j=1;j<=m;j++)//把每条边都拿出来,起点更新终点
{
int a=edge[j].from;
int b=edge[j].to;
int c=edge[j].v;
if(dis[b]>dis[a]+c)//不断更新边
{//第一次只能把一旁边的边枚举一下,然后找到最短的继续更新
dis[b]=dis[a]+c;
}//核心思想:每次一轮把起点更新为终点
}
}
return 0;
}
Dijkstra
邻接矩阵O(n^2)//70分代码
//每次(n-1)用 离起点最近的点 去更新其他的点
//dis[i]最小的值
const int M=1000000;
const int inf=0x3f3f3f3f;
int dis[M],mp[M][M];//邻接矩阵
bool mark[M];
void Dijkstra(){O(n^2)
memset(dis,inf,sizeof(dis));
memset(mark,0,sizeof(mark));
dis[1]=0;
for(int i=1;i<n;i++)
{
int k=-1,mi=inf;
for(int j=1;j<=n;j++)//每次从未使用过的点中找一个最小值
{
if(!mark[j]&&dis[j]<mi)
{
mi=dis[j];
k=j;
}
if(k==-1)return;//永远不会被找到
}
mark[k]=true;//表示这个点使用过
//用k更新其他点的距离
for(int j=1;j<=n;j++)//更新的是其他点的,所以循环n次即可
//长度是mp[k][j]
//k------->j
{
if(!mark[j]&&dis[j]>dis[k]+mp[k][j])
{
dis[j]=dis[k]+mp[k][j];
}
}
}
}
int main(){
int n,m;
cin>>n>>m;
memset(mp,inf,sizeof(mp));
for(int i=1;i<=m;i++)
{
int a,b,c;
cin>>a>>b>>c;
if(mp[a][b]>c)
{
mp[a][b]=c;
}
}
Dijkstra();
return 0;
}
优化1//运气好能满
//每次(n-1)用 离起点最近的点 去更新其他的点
//dis[i]最小的值
const int M=10000;
const int inf=0x3f3f3f3f;
int dis[M];
bool mark[M];
struct node{
int to,v;
};
vector<node> edge[M];//邻接表
void Dijkstra(){O(n^2)
memset(dis,inf,sizeof(dis));
memset(mark,0,sizeof(mark));
dis[1]=0;
for(int i=1;i<n;i++)
{
int k=-1,mi=inf;
for(int j=1;j<=n;j++)//每次从未使用过的点中找一个最小值
{
if(!mark[j]&&dis[j]<mi)
{
mi=dis[j];
k=j;
}
if(k==-1)return;//永远不会被找到
}
mark[k]=true;//表示这个点使用过
//用k更新其他点的距离
for(int j=0;j<edge[k].size();j++)//更新的是其他点的,所以循环n次即可
//k------->y
{//枚举以k为起点,能到达的边
int y=edge[k][j].to;
int v=edge[k][j].v;
if(!mark[y]&&dis[y]>dis[k]+v)
{
dis[y]=dis[k]+v;
}
}
}
}
int main(){
int n,m;
cin>>n>>m;
memset(mp,inf,sizeof(mp));
for(int i=1;i<=m;i++)
{
int a,b,c;
cin>>a>>b>>c;
edge[a].push_back(node{b,c});//存结构体
}
Dijkstra();
return 0;
}
优化2//100分算法(堆+Dijkstra)
//每次(n-1)用 离起点最近的点 去更新其他的点
//dis[i]最小的值
const int M=10000;
const int inf=0x3f3f3f3f;
int dis[M];
bool mark[M];
struct node{
int to,v;
bool operator < (const node &A)const{//运算符重载
return v<A.v;
}
};
vector<node> edge[M];//邻接表
priority_queue<node>Q;
void Dijkstra(){
memset(dis,inf,sizeof(dis));
memset(mark,0,sizeof(mark));
dis[1]=0;
Q.push((node){1,0});
while(!Q.empty())
{
node tmp=Q.pop();
Q.pop();
int k=tmp.to;
if(mark[k])continue;
mark[k]=true;//表示这个点使用过
//用k更新其他点的距离
for(int j=0;j<edge[k].size();j++)//更新的是其他点的,所以循环n次即可
//k------->y
{//枚举以k为起点,能到达的边
int y=edge[k][j].to;
int v=edge[k][j].v;
if(!mark[y]&&dis[y]>dis[k]+v)
{
dis[y]=dis[k]+v;
Q.push((node){y,dis[y]});
}
}
}
}
int main(){
int n,m;
cin>>n>>m;
memset(mp,inf,sizeof(mp));
for(int i=1;i<=m;i++)
{
int a,b,c;
cin>>a>>b>>c;
edge[a].push_back(node{b,c});//存结构体
}
Dijkstra();
return 0;
}
SPFA(优化了bellman_ford)
const int inf=0x3f3f3f3f;
const int M=10000;
struct node{
int to,v;
};
int dis[M];
queue<int>Q;
vector<node>edge[M];
bool mark[M];
int cnt[M];
int main(){
int n,m,a,b,c;
cin>>n>>m;
memset(dis,inf,sizeof(dis));
int f=false;
for(int i=1;i<=m;i++)
{
scanf("%d %d %d",&a,&b,&c);
edge[a].push_back((node){b,c});
}
dis[1]=0;
Q.push(1);
while(!Q.empty())//广度优先搜索
{
int k=Q.front();//每次把可能会更新其他的点那出来松弛相邻点
Q.pop();
mark[k]=0;//与BFS的区别
for(int j=0;j<edge[k].size();j++)
{
int y=edge[k][j].to;
int v=edge[k][j].v;
if(dis[y]>dis[k]+v)
{
dis[y]=dis[k]+v;
if(!mark[y])
{
Q.push(y);
mark[y]=1;
cnt[y]++;
if(cnt[y]==n)f=true;
}
}
}
}
return 0;
}
Floyd
const int M=105;
const int inf=0x3f3f3f3f;
int dis[M][M];
int main(){
int n,m,a,b,c;
cin>>n>>m;
memset(dis,inf,sizeof(dis));
for(int i=1;i<=n;i++)
{
dis[i][i]=0;
}
for(int i=1;i<=m;i++)
{
scanf("%d %d %d",&a,&b,&c);
if(dis[a][b]>c)
{
dis[a][b]=c;
}
//floyd求任意两点间的最短距离
}
for(int k=1;k<=n;k++)
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(dis[i][j]>dis[i][k]+dis[k][j])//k是拐点
{
dis[i][j]=dis[i][k]+dis[k][j];//传递背包,动态规划
}
}
}
}
return 0;
}