最短路径
最短路径的四种算法
bellman_ford
O(n*m)的时间复杂度
从一个点到另一个点,最多只有n-1步
把整张图更新n-1次
const int inf=0x3f3f3f3f;
const int M=10000;
struct node{
int from,to,v;
}edge[M*10];
int dis[M];
int main(){
int n,m;
cin>>n>>m;
memset(dis,inf,sizeof(dis));
for(int i=1;i<=m;i++)
{
scanf("%d %d %d",&edge.from,&edge.to,&edge.v);
}
dis[1]=0;//最短路径,1-1的距离为0;
for(int i=1;i<n;i++)//一个无向图,n个定点只需要n-1条边进行连接,所以只需要枚举n个定点即可
{
for(int j=1;j<=m;j++)//把每条边都拿出来,起点更新终点
{
int a=edge[j].from;
int b=edge[j].to;
int c=edge[j].v;
if(dis[b]>dis[a]+c)//不断更新边
{
//第一次只能把一旁边的边枚举一下,然后找到最短的继续更新
dis[b]=dis[a]+c;
}//核心思想:每次一轮把起点更新为终点
}
}
return 0;
}
Dijkstra
邻接矩阵O(n^2)//70分代码
//每次(n-1)用 离起点最近的点 去更新其他的点
//dis[i]最小的值
const int M=1000000;
const int inf=0x3f3f3f3f;
int dis[M],mp[M][M];//邻接矩阵
bool mark[M];
void Dijkstra(){
O(n^2)
memset(dis,inf,sizeof(dis));
memset(mark,0,sizeof(mark));
dis[1]=0;
for(int i=1;i<n;i++)
{
int k=-1,mi=inf;
for(int j=1;j<=n;j++)//每次从未使用过的点中找一个最小值
{
if(!mark[j]&&dis[j]<mi)
{
mi=dis[j];
k=j