数字图像傅里叶变换的物理意义及简单应用

46 篇文章 14 订阅 ¥59.90 ¥99.00
本文介绍了数字图像傅里叶变换的物理意义,它将图像从空间域转换到频率域,揭示图像的不同空间特征。傅里叶变换常用于图像滤波,通过改变频率分量实现图像增强或去噪。文中提供了一个简单的低通滤波器代码示例。
摘要由CSDN通过智能技术生成

傅里叶变换是一种重要的数学工具,用于将一个函数(或信号)表示为一系列正弦和余弦函数的叠加。在数字图像处理中,傅里叶变换被广泛应用于分析和处理图像。本文将介绍数字图像傅里叶变换的物理意义以及一些简单的应用,并提供相应的源代码。

傅里叶变换的物理意义:
数字图像可以看作是一个二维函数,其中每个像素表示图像在空间中的亮度或颜色值。傅里叶变换可以将这个二维函数表示为一系列频率分量的叠加,这些频率分量可以用来描述图像中的不同空间特征。

具体而言,傅里叶变换将图像从空间域转换到频率域。在频率域中,图像可以表示为一组复数,其中每个复数表示了图像中对应频率的振幅和相位信息。通过分析这些频率分量,我们可以了解图像中存在的不同空间特征,例如边缘、纹理和周期性结构等。

简单应用:图像滤波
一个常见的傅里叶变换的应用是图像滤波。图像滤波是一种通过改变图像的频率分量来实现对图像的增强或去除噪声的方法。下面是一个简单的图像低通滤波器的示例代码:

import cv2
import numpy as np
from matplotlib 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值