傅里叶变换是一种重要的数学工具,用于将一个函数(或信号)表示为一系列正弦和余弦函数的叠加。在数字图像处理中,傅里叶变换被广泛应用于分析和处理图像。本文将介绍数字图像傅里叶变换的物理意义以及一些简单的应用,并提供相应的源代码。
傅里叶变换的物理意义:
数字图像可以看作是一个二维函数,其中每个像素表示图像在空间中的亮度或颜色值。傅里叶变换可以将这个二维函数表示为一系列频率分量的叠加,这些频率分量可以用来描述图像中的不同空间特征。
具体而言,傅里叶变换将图像从空间域转换到频率域。在频率域中,图像可以表示为一组复数,其中每个复数表示了图像中对应频率的振幅和相位信息。通过分析这些频率分量,我们可以了解图像中存在的不同空间特征,例如边缘、纹理和周期性结构等。
简单应用:图像滤波
一个常见的傅里叶变换的应用是图像滤波。图像滤波是一种通过改变图像的频率分量来实现对图像的增强或去除噪声的方法。下面是一个简单的图像低通滤波器的示例代码:
import cv2
import numpy as np
from matplotlib