傅立叶变换在图像处理中的作用

Matlab是一种科学计算软件,专门以矩阵的形式处理数据。MATLAB 将高性能的数值计算和可视化集成在一起,构成了一个方便的、界面友好的用户环境,并提供了大量的内置函数。从而被广泛地应用于科学计算、控制系统、信息处理、神经网络、图像处理、小波分析等领域的分析、仿真和设计工作,而且利用 MATLAB 产品的开放式结构,可以非常容易地对 MATLAB 的功能进行扩充,从而在不断深化对问题认识的同时,不断完善 MATLAB 产品以提高产品自身的竞争能力。MATLAB中的数字图像是以矩阵形式表示的,这意味着MATLAB强大的矩阵运算能力用于图像处理非常有利,矩阵运算的语法对MATLAB中的数字图像同样适用。MATLAB图像处理工具箱支持四种图像类型,分别为真彩色图像、索引色图像、灰度图像、二值图像,由于有的函数对图像类型有限制,这四种类型可以用工具箱的类型转换函数相互转换。MATLAB可操作的图像文件包括BMP、HDF、JPEG、PCX、TIFF、XWD等格式。

3.4 基于Matlab的图像傅里叶变换实例分析

实例1:图像压缩

对一副灰度图像而言,先对行进行DCT变换,然后对列进行DCT变换,其变换结果的能量将主要集中在左上角的位置,即低频部分。

%DCT

%图像压缩

X=imread('rice.tif');%读取8bit的灰度图像

figure(1);

imshow(X);

%DCT变换

X2=imresize(X,0.0625);%缩小

Y=dct(X2);

%结果输出

figure(2);

mesh(Y);

colormap(jet);

colorbar;

如下图所示,图像的能量主要集中在(0,0)附近,随着频率增加,幅值的绝对值急剧减小。

 

 

实例2图像去噪

%图像抑噪

X=imread('rice.tif');

[m,n]=size(X);%读取图像尺寸

Xnoised=imnoise(X,'speckle',0.01);

figure(1);%输出加噪图像

imshow(Xnoised);

Y=dct2(Xnoised);

I=zeros(m,n);

I(1:m/3,1:n/3)=1;%高频屏蔽

Ydct=Y.*I;

Y=uint8(idct2(Ydct));

figure(2);

imshow(Y);

 

 

 

 

 

四、总结

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值