12小球找坏球的问题

这是很久以前做过的一个题目,也是颇费了一番脑筋,当时好像想了好长时间。
题目如下:
12个小球, 有一个是坏球,即重量不合格;有一个天平,请用最多三次将次品找出。
方法如下:
分成三组,每组四个,即 AAAA,BBBB,CCCC。
将AAAA和BBBB 分别放到天平两端,则结果可能如下:
1.1 天平平衡
1.2 天平不平衡
分别讨论
1.1
平衡说明AB两组都是好球,坏球在C组中。
1.1.1 取AAA 和CCC 放到天平两端, 则
1.1.1.1 平衡 ,说明 天平上的球都是好球,剩下的C球是坏球;
1.1.1.2 不平衡 说明 CCC 中因坏球,此时又有两种情况
1.1.1.2.1 A端轻C段重,因为AAA是好球,所以坏球必然是重球, 则
1.1.1.2.1.1 将CCC中的CC 放到天平两端, 则出现两种可能
1.1.1.2.1.1.1 平衡 则 3C球中不在天平的上球是坏球;
1.1.1.2.1.1.2 不平衡,则下沉端的C球是坏球( 根据1.1.1.2.1)
1.1.1.2.2 A端重C段轻,参考上面分析,不在赘述。

1.2 天平不平衡, 则 CCCC 是好球
1.2.1 记录天平平衡状,两种情况
1.2.1.1 A重B轻
1.2.1.2 A轻B重
分别讨论
1.2.1.1 A重B轻
拿下BBB 放到一旁 ,取AAA 放到天平B端,取CCC放到天平A端,此时天平上是 ACCC, BAAA
此时出现两种情况
1.2.1.1.1天平平衡
1.2.1.1.2 天平失衡
分别讨论
1.2.1.1.1 平衡, 说明天平上的球都是好球,即 ACCC 和 BAAA 都是好球,即AAAA是好球, 则根据1.2.1.1, 坏球是轻球, 则 BBB中的轻球为坏球, 根据前面的结论(参考 1.1.1.2.1),一次可以找出。
1.2.1.1.2 失衡 ,两种情况:
1.2.1.1.2.1 方向没有改变,说明AAA和CCC是等价的(不影响天平方向), 则AAA是好球, 则 天平上的ACCC 中A 和CCCB的B 有一个是坏球,因为知道好球, 将A 或B和C比较,一次就可以找出坏球。
1.2.1.1.2.2 方向发生改变,说明CCC和AAA 不等价,即AAA中有坏球, 并且根据方向变化,可知坏球轻重;三球知轻重的情况下,一次即可找出坏球。
1.2.1.2 A轻B重 分析同上,不再讨论。

maraSun BJFWDQ
是记。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值