一.题目
给定两个大小为 m 和 n 的有序数组 nums1 和 nums2。
请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。
你可以假设 nums1 和 nums2 不会同时为空。
示例 1:
nums1 = [1, 3]
nums2 = [2]
则中位数是 2.0
示例 2:
nums1 = [1, 2]
nums2 = [3, 4]
则中位数是 (2 + 3)/2 = 2.5
二.代码(C)
double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size)
{
int i;
int k,j;
char flag=0;
double temp1;
if((nums1Size+nums2Size)%2)
{
flag = 1;
}
k = 0;
j = 0;
for(i=0;i<(nums1Size+nums2Size)/2;i++)
{
if(k<nums1Size&&j<nums2Size)
{
if(nums1[k]<nums2[j])
{
if(i==(nums1Size+nums2Size)/2-1)
temp1 = nums1[k];
k++;
}
else
{
if(i==(nums1Size+nums2Size)/2-1)
temp1 = nums2[j];
j++;
}
}
else if(k>=nums1Size)
{
if(i==(nums1Size+nums2Size)/2-1)
temp1 = nums2[j];
j++;
}
else
{
if(i==(nums1Size+nums2Size)/2-1)
temp1 = nums1[k];
k++;
}
}
if(k<nums1Size&&j<nums2Size)
{
if(nums1[k]<nums2[j])
{
if(flag)
return nums1[k];
else
return (temp1+nums1[k])/2;
}
else
{
if(flag)
return nums2[j];
else
return (temp1+nums2[j])/2;
}
}
else if(k>=nums1Size)
{
if(flag)
return nums2[j];
else
return (temp1+nums2[j])/2;
}
else
{
if(flag)
return nums1[k];
else
return (temp1+nums1[k])/2;
}
}
三.提交记录
四.备注
无