线性代数-行列式

以下均为个人理解,如有错误,请大佬指出,小生立马就改正。
行列式部分并非适合纯入门观看

1. 二阶和三阶行列式

行列式是线性代数中常用的工具。


1.1 二阶行列式的概念

首先,第一步,我们先举一个二阶行列式
[ a 11 a 12 a 21 a 22 ] \left[ \begin{matrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \end{matrix} \right] [a11a21a12a22]

其中数 a i j a_{ij} aij(i=1,2;j=1,2)称为行列式的元素,元素 a i j a_{ij} aij的第一个下表i称为行标,表示该元素位于第i行;第二个下表j称为列标,表明表示该元素位于第j列;因此,位于第i行第j列的元素称为行列式的(i,j)元


1.1.1 二阶行列式的对角线法则

计算行列式的最简单的方法就是使用对角线法则。
具体的计算方法如下:
在这里插入图片描述
红线的两个元素相乘的结果,减黑线的两个元素相乘的结果。
a 11 ∗ a 22 − a 12 ∗ a 21 a_{11}*a_{22}-a_{12}*a_{21} a11a22a12a21

注意:对角线法则的计算方式只适用于二阶和三阶的行列式


1.2三阶行列式的概念

第一步,我们一样,也举一个三阶行列式
[ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] \left[ \begin{matrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{matrix} \right] a11a21a31a12a22a32a13a23a33


1.2.1 三阶行列式的对角线法则

三阶行列式的计算方法其实与二阶类似,如下图所示
在这里插入图片描述
①将每条的红线连接的3个元素相乘,将每条的蓝线连接的3个元素相乘。
A 1 = a 11 ∗ a 22 ∗ a 33 A_1=a_{11}*a_{22}*a_{33} A1=a11a22a33
A 2 = a 12 ∗ a 23 ∗ a 31 A_2=a_{12}*a_{23}*a_{31} A2=a12a23a31
A 3 = a 13 ∗ a 21 ∗ a 32 A_3=a_{13}*a_{21}*a_{32} A3=a13a21a32
A 4 = a 13 ∗ a 22 ∗ a 31 A_4=a_{13}*a_{22}*a_{31} A4=a13a22a31
A 5 = a 12 ∗ a 21 ∗ a 33 A_5=a_{12}*a_{21}*a_{33} A5=a12a21a33
A 6 = a 11 ∗ a 23 ∗ a 32 A_6=a_{11}*a_{23}*a_{32} A6=a11a23a32
②将得出来的六个结果全部相加,其中,红线得出的结果为,蓝线得出的结果为
A 1 + A 2 + A 3 − A 4 − A 5 − A 6 A_1+A_2+A_3-A_4-A_5-A_6 A1+A2+A3A4A5A6

注意:对角线法则的计算方式只适用于二阶和三阶的行列式


1.3 例题

D = [ 1 2 − 4 − 2 2 1 − 3 4 − 2 ] D= \left[ \begin{matrix} 1 & 2 & -4 \\ -2 & 2 & 1 \\ -3 & 4 & -2 \\ \end{matrix} \right] D=123224412
解:按照对角线法则,由
D = 1 ∗ 2 ∗ ( − 2 ) + 2 ∗ 1 ∗ ( − 3 ) + ( − 4 ) ∗ ( − 2 ) ∗ 4 − ( − 4 ) ∗ 2 ∗ ( − 3 ) − 2 ∗ ( − 2 ) ∗ ( − 2 ) − 1 ∗ 1 ∗ 4 D=1*2*(-2)+2*1*(-3)+(-4)*(-2)*4-(-4)*2*(-3)-2*(-2)*(-2)-1*1*4 D=12(2)+21(3)+(4)(2)4(4)2(3)2(2)(2)114
D = ( − 4 ) + ( − 6 ) + 32 − 24 − 8 − 4 D=(-4)+(-6)+32-24-8-4 D=(4)+(6)+322484
D = − 14 D=-14 D=14


2. 全排列和对换


2.1 全排序

把n个不同的元素排成一列,叫做这n个元素的全排列,简称排列
n个不同的元素的所有不同的排列种类用 P n P_n Pn表示, 计算方式如下:
P n = n ∗ ( n − 1 ) ∗ . . . . . . ∗ 3 ∗ 2 ∗ 1 = n ! P_n=n*(n-1)*......*3*2*1=n! Pn=n(n1)......321=n!

举个例子:如果用1,2,3这三个数字作排列,那么排列的总数 P 3 = 3 ∗ 2 ∗ 1 = 6 P_3=3*2*1=6 P3=321=6,这六个排序分别是:
123 , 231 , 312 , 132 , 213 , 321 123,231,312,132,213,321 123231312132213321


2.2 逆序数

对于n个不同的元素,在规定各个元素的先后时,有个标准次序(通常情况下,由小到大为标准次序)。
于是在这n个元素的任意排列中,当某一对元素的先后次序与标准次序不同时,就说他构成一个逆序
(简单的判定方法:将每个数字分别和该数字后面的每一个数字进行对比,如果每比后面的一个数字大,那么就构成了一个逆序)
一个排列中所有逆序数的总数,叫做这个排列的逆序数
逆序数为奇数的排列叫做奇排列,逆序数为偶数的排列叫做偶排列

接下来,举个栗子:
求排列32514的逆序数.
(简单的判定方法:将每个数字分别和该数字后面的每一个数字进行对比,如果每比后面的一个数字大,那么就构成了一个逆序)
先从第一个数字开始。
3>2,3>1,所以这是2个逆序。
然后是第二位数字。
2>1,这是第三个逆序。
第三个数
5>1,5>4,又是两个逆序,这样就有5个逆序了。
第四个数
因为1<4所以这个不是逆序。
第五个数字后面已经没有数字了,所以不需要继续做对比了。
那么一共由5个逆序,所以逆序数是5,为奇序数。


2.3 对换

在排列中,将任意的两个元素对调,其他元素不变,这种做出新排序的手续称为对换,将相邻的两个元素对换,叫做相邻对换

定理1:一个排列中任意两个元素对换,排列改变奇偶性
推论:奇排列对换成标准排序的对换次数为奇数偶排列对换成标准排序的对换次数为偶数


3. n阶行列式


3.1 n阶行列式的定义

D = [ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ] D= \left[ \begin{matrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & a_{22} & ... & a_{2 n} \\ ... & ... & ... & ...&\\ a_{n1} & a_{n2} & ... & a_{nn} \\ \end{matrix} \right] D=a11a21...an1a12a22...an2............a1na2n...ann

此为n阶行列式,简记为det( a i j a_{ij} aij),其中数 a i j a_{ij} aij为行列式D的(i,j)元。

两种较为特殊的行列式:
下(上)三角行列式:主对角线以上(或以下)的元素均为0的行列式。
D = [ a 11 0 a 21 a 22 . . . . . . . . . a n 1 a n 2 . . . a n n ] = a 11 ∗ a 22 ∗ . . . ∗ a n n D= \left[ \begin{matrix} a_{11} & & & 0\\ a_{21} & a_{22} & & \\ ... & ... & ... & &\\ a_{n1} & a_{n2} & ... & a_{nn} \\ \end{matrix} \right]=a_{11}*a_{22}*...*a_{nn} D=a11a21...an1a22...an2......0ann=a11a22...ann
对角行列式:主对角线以上和以下的元素均为0的行列式。
D = [ a 11 a 22 . . . a n n ] = a 11 ∗ a 22 ∗ . . . ∗ a n n D= \left[ \begin{matrix} a_{11} & & & \\ & a_{22} && \\ & & ... & &\\ & & & a_{nn} \\ \end{matrix} \right]=a_{11}*a_{22}*...*a_{nn} D=a11a22...ann=a11a22...ann


3.2 行列式的性质

D = [ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ] D= \left[ \begin{matrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & a_{22} & ... & a_{2 n} \\ ... & ... & ... & ...&\\ a_{n1} & a_{n2} & ... & a_{nn} \\ \end{matrix} \right] D=a11a21...an1a12a22...an2............a1na2n...ann

D T = [ a 11 a 21 . . . a n 1 a 12 a 22 . . . a n 2 . . . . . . . . . . . . a 1 n a 2 n . . . a n n ] D^T= \left[ \begin{matrix} a_{11} & a_{21} & ... & a_{n1}\\ a_{12} & a_{22} & ... & a_{n2} \\ ... & ... & ... & ...&\\ a_{1n} & a_{2n} & ... & a_{nn} \\ \end{matrix} \right] DT=a11a12...a1na21a22...a2n............an1an2...ann

行列式 D T D^T DT称为行列式D的转置行列式

性质1行列式与它的转置行列式相等。

性质2:对换行列式的两行(列)行列式变号
r i r_i ri表示行列式的第i行,以 c j c_j cj表示行列式的第j行。
对换a、b两行记作 r a r_a ra←→ r b r_b rb,对换a、b两列记作 c a c_a ca←→ c b c_b cb
推论:如果行列式由两行(列)完全相同,则此行列式等于零

性质3:行列式的某一行(列)中所有的元素都乘同一个数k**,等于用数k乘以此行列式

性质4:行列式中有两行(列)元素成比例,则此行列式等于零。(由性质2的推论加上性质3得出)

性质5:若行列式的某一行(列)的元素是两数之和,则行列式D下列等于两个行列式之和。
栗子:
D = [ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a i 1 + a i 1 , a i 2 + a i 2 , . . . a i n + a i n , . . . . . . . . . . . . a n 1 a n 2 . . . a n n ] D= \left[ \begin{matrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & a_{22} & ... & a_{2 n} \\ ... & ... & ... & ...&\\ a_{i1}+a^,_{i1} & a_{i2}+a^,_{i2} & ... & a_{in}+a^,_{in} &\\ ... & ... & ... & ...&\\ a_{n1} & a_{n2} & ... & a_{nn} \\ \end{matrix} \right] D=a11a21...ai1+ai1,...an1a12a22...ai2+ai2,...an2..................a1na2n...ain+ain,...ann

D = [ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a i 1 a i 2 . . . a i n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ] + [ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a i 1 , a i 2 , . . . a i n , . . . . . . . . . . . . a n 1 a n 2 . . . a n n ] D= \left[ \begin{matrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & a_{22} & ... & a_{2 n} \\ ... & ... & ... & ...&\\ a_{i1} & a_{i2} & ... & a_{in} &\\ ... & ... & ... & ...&\\ a_{n1} & a_{n2} & ... & a_{nn} \\ \end{matrix} \right]+ \left[ \begin{matrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & a_{22} & ... & a_{2 n} \\ ... & ... & ... & ...&\\ a^,_{i1} & a^,_{i2} & ... & a^,_{in} &\\ ... & ... & ... & ...&\\ a_{n1} & a_{n2} & ... & a_{nn} \\ \end{matrix} \right] D=a11a21...ai1...an1a12a22...ai2...an2..................a1na2n...ain...ann+a11a21...ai1,...an1a12a22...ai2,...an2..................a1na2n...ain,...ann

行列式6:把行列式的某一行(列)的各元素乘同一数然后加到另一行(列)对应的元素上去,行列式不变。(由性质4加上性质5得出)
[ a 11 a 12 . . . a 1 n . . . . . . . . . . . . a i 1 a i 2 . . . a i n . . . . . . . . . . . . a j 1 a j 2 . . . a j n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ] = r j + k r i = [ a 11 a 12 . . . a 1 n . . . . . . . . . . . . a i 1 a i 2 . . . a i n . . . . . . . . . . . . a j 1 + k a i 1 a j 2 + k a i 2 . . . a j n + k a i n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ] \left[ \begin{matrix} a_{11} & a_{12} & ... & a_{1n}\\ ... & ... & ... & ...&\\ a_{i1} & a_{i2} & ... & a_{in} &\\ ... & ... & ... & ...&\\ a_{j1} & a_{j2} & ... & a_{jn} &\\ ... & ... & ... & ...&\\ a_{n1} & a_{n2} & ... & a_{nn} \\ \end{matrix} \right]= r_j+kr_i= \left[ \begin{matrix} a_{11} & a_{12} & ... & a_{1n}\\ ... & ... & ... & ...&\\ a_{i1} & a_{i2} & ... & a_{in} &\\ ... & ... & ... & ...&\\ a_{j1}+ka_{i1} & a_{j2} +ka_{i2} & ... & a_{jn}+ka_{in} &\\ ... & ... & ... & ...&\\ a_{n1} & a_{n2} & ... & a_{nn} \\ \end{matrix} \right] a11...ai1...aj1...an1a12...ai2...aj2...an2.....................a1n...ain...ajn...ann=rj+kri=a11...ai1...aj1+kai1...an1a12...ai2...aj2+kai2...an2.....................a1n...ain...ajn+kain...ann


3.3 行列式按行(列)展开

低阶行列式的计算比高阶行列式的计算简便,所以我们自然要考虑用低阶行列式来表示高阶行列式的问题,由此引出了下面的余子式代数余子式的概念。

在n阶行列式中,把(i,j)元 a i j a_{ij} aij所在的第i行和第j列划去后,留下的n-1阶行列式叫做(i,j)元 a i j a_{ij} aij余子式,记作 M i j M_{ij} Mij
记代数余子式:
A i j = ( − 1 ) i + j M i j A_{ij}=(-1)^{i+j}M_{ij} Aij=(1)i+jMij
A i j A_{ij} Aij叫做(i,j)元 a i j a_{ij} aij的代数余子式。

举个栗子:
四阶行列式如下,我们求其中(3,2)元 a i j a_{ij} aij的余子式和代数余子式分别为:
D = [ a 11 a 12 a 13 a 14 a 21 a 22 a 23 a 24 a 31 a 32 a 33 a 34 a 41 a 42 a 43 a 44 ] D= \left[ \begin{matrix} a_{11} & a_{12} & a_{13} & a_{14}\\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} &a_{33} & a_{34}&\\ a_{41} & a_{42} & a_{43} & a_{44} \\ \end{matrix} \right] D=a11a21a31a41a12a22a32a42a13a23a33a43a14a24a34a44
M 32 = [ a 11 a 13 a 14 a 21 a 23 a 24 a 41 a 43 a 44 ] M_{32}= \left[ \begin{matrix} a_{11} & a_{13} & a_{14}\\ a_{21}& a_{23} & a_{24} \\ a_{41} & a_{43} & a_{44} \\ \end{matrix} \right] M32=a11a21a41a13a23a43a14a24a44
A 32 = ( − 1 ) 3 + 2 M 32 = − M 32 A_{32}=(-1)^{3+2}M_{32}=-M_{32} A32=(1)3+2M32=M32

定理1:一个n阶行列式,如果其中第i行所有元素除(i,j)元 a i , j a_{i,j} ai,j外都为,那么这行列式等于 a i , j a_{i,j} ai,j与它的代数余子式的乘积,即
D = a i j ∗ A i j D=a_{ij}*A_{ij} D=aijAij
定理2:行列式等于它的任意一行(列)的各元素与其对应的代数余子式的乘积之和,即:]
D = a i 1 ∗ A i 1 + a i 2 ∗ A i 2 + . . . + a i n ∗ A i n D=a_{i1}*A_{i1}+a_{i2}*A_{i2}+...+a_{in}*A_{in} D=ai1Ai1+ai2Ai2+...+ainAin
D = a 1 j ∗ A 1 j + a 2 j ∗ A 2 j + . . . + a n j ∗ A n j D=a_{1j}*A_{1j}+a_{2j}*A_{2j}+...+a_{nj}*A_{nj} D=a1jA1j+a2jA2j+...+anjAnj

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值