线性代数-矩阵及其运算

以下均为个人理解,如有错误,请大佬指出,小生立马就改正。

1. 线性方程组

设,有n个未知数m个方程的线性方程组:
{ a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 . . . . . . a m 1 x 1 + a m 2 x 2 + . . . + a m n x n = b m \left\{ \begin{aligned} &a_{11}x_1+a_{12}x_2+...+a_{1n}x_n=b_1\\ &a_{21}x_1+a_{22}x_2+...+a_{2n}x_n=b_2\\ &......\\ &a_{m1}x_1+a_{m2}x_2+...+a_{mn}x_n=b_m\\ \end{aligned} \right. a11x1+a12x2+...+a1nxn=b1a21x1+a22x2+...+a2nxn=b2......am1x1+am2x2+...+amnxn=bm

其中 a i j a_{ij} aij是第i个方程的第j个未知数的系数 b i b_i bi是第i个方程的常数项,i=1,2,…,m;j=1,2,…,n;当常数项 b 1 b_1 b1 b 2 b_2 b2,…, b m b_m bm不为零时,称作n元非齐次线性方程组

{ a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = 0 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = 0 . . . . . . a m 1 x 1 + a m 2 x 2 + . . . + a m n x n = 0 \left\{ \begin{aligned} &a_{11}x_1+a_{12}x_2+...+a_{1n}x_n=0\\ &a_{21}x_1+a_{22}x_2+...+a_{2n}x_n=0\\ &......\\ &a_{m1}x_1+a_{m2}x_2+...+a_{mn}x_n=0\\ \end{aligned} \right. a11x1+a12x2+...+a1nxn=0a21x1+a22x2+...+a2nxn=0......am1x1+am2x2+...+amnxn=0
当常数项 b 1 b_1 b1 b 2 b_2 b2,…, b m b_m bm为零时,称作n元齐次线性方程组

补充:n元线性方程组简称线性方程组或方程组。

2. 矩阵的定义

定义1:由mn个数 a i j a_{ij} aij排成的m行n列的数表称为m行n列矩阵,简称mxn矩阵,记作
A = ( a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a m 1 a m 2 . . . a m n ) A= \begin{pmatrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & a_{22} & ... & a_{2 n} \\ ... & ... & ... & ...&\\ a_{m1} & a_{m2} & ... & a_{mn} \\ \end{pmatrix} A=a11a21...am1a12a22...am2............a1na2n...amn
这m
n个数称为矩阵的元素,简称,数 a i j a_{ij} aij位于矩阵A第i行第j列,称为矩阵A的(i,j)元

以数 a i j a_{ij} aij为(i,j)元的矩阵可简记作 ( a i j ) (a_{ij}) (aij) ( a i j ) m ∗ n (a_{ij})_{m*n} (aij)mn.
m*n矩阵A也记作 A m ∗ n A_{m*n} Amn.

元素是实数的矩阵称为实矩阵,元素是负数的矩阵称为复矩阵
补充:接下来没有特殊说明都指实矩阵。

行数和列数都等于n的矩阵称为n阶矩阵n阶方阵.n阶矩阵A也记作 A n A_n An.

两个矩阵的行数、列数相等,就称这两个矩阵为同型矩阵
如果 A = ( a i j ) A=(a_{ij}) A=(aij) B = ( b i j ) B=(b_{ij}) B=(bij)同型矩阵,并且他们的对应元素相等( ( a i j ) = ( b i j ) (a_{ij})=(b_{ij}) (aij)=(bij)),那么就称矩阵A与矩阵B相等,记作A=B.

元素都是零的矩阵称为零矩阵,,记作 O O O.

2.1.1 行矩阵

只有一的矩阵称为行矩阵,又称行向量
A = ( a 1 a 2 . . . a n ) A= \begin{pmatrix} a_{1} & a_{2} & ... & a_{n}\\ \end{pmatrix} A=(a1a2...an)

2.1.2 行矩阵

只有一的矩阵称为列矩阵,又称列向量
A = ( b 1 b 2 . . . b m ) A= \begin{pmatrix} b_{1} \\ b_{2} \\ ... \\ b_{m}\\ \end{pmatrix} A=b1b2...bm

2.2 非齐次线性方程组的矩阵

设,有n个未知数m个方程的线性方程组:
{ a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 . . . . . . a m 1 x 1 + a m 2 x 2 + . . . + a m n x n = b m \left\{ \begin{aligned} &a_{11}x_1+a_{12}x_2+...+a_{1n}x_n=b_1\\ &a_{21}x_1+a_{22}x_2+...+a_{2n}x_n=b_2\\ &......\\ &a_{m1}x_1+a_{m2}x_2+...+a_{mn}x_n=b_m\\ \end{aligned} \right. a11x1+a12x2+...+a1nxn=b1a21x1+a22x2+...+a2nxn=b2......am1x1+am2x2+...+amnxn=bm

其中有那么几个有用的矩阵:
A = a i j A=a_{ij} A=aij
x = ( x 1 x 2 . . . x n ) x=\begin{pmatrix} x_{1} \\ x_{2} \\ ... \\ x_{n}\\ \end{pmatrix} x=x1x2...xn
b = ( b 1 b 2 . . . b m ) b=\begin{pmatrix} b_{1} \\ b_{2} \\ ... \\ b_{m}\\ \end{pmatrix} b=b1b2...bm
B = ( a 11 a 12 . . . a 1 n b 1 a 21 a 22 . . . a 2 n b 2 . . . . . . . . . . . . a m 1 a m 2 . . . a m n b m ) B= \begin{pmatrix} a_{11} & a_{12} & ... & a_{1n} & & b_{1}\\ a_{21} & a_{22} & ... & a_{2 n} & &b_{2}\\ ... & ... & & ...&& ...\\ a_{m1} & a_{m2} & ... & a_{mn}& & b_{m} \\ \end{pmatrix} B=a11a21...am1a12a22...am2.........a1na2n...amnb1b2...bm
其中A称为系数矩阵,x称为未知数矩阵,b称为常系数矩阵,B称为增广矩阵

2.3 单位矩阵

E = ( 1 0 . . . 0 0 1 . . . 0 . . . . . . . . . 0 0 . . . 1 ) E= \begin{pmatrix} 1 & 0 & ... & 0 & \\ 0 &1 & ... & 0 \\ ... & ... & & ...\\ 0 & 0 & ... & 1 \\ \end{pmatrix} E=10...001...0.........00...1
矩阵E叫做n阶单位矩阵,其特点是对角线上的元素都是1,其他元素都是0。

3. 矩阵的运算

3.1 矩阵的加减法

定义1:设有两个m*n的矩阵 A = ( a i j ) A=(a_{ij}) A=(aij) B = ( b i j ) B=(b_{ij}) B=(bij),那么矩阵A与B的和记作A+B,规定为:
A + B = ( a 11 + b 11 a 12 + b 12 . . . a 1 n + b 1 n a 21 + b 21 a 22 + b 22 . . . a 2 n + b 2 n . . . . . . . . . . . . a m 1 + b m 1 a m 2 + b m 2 . . . a m n + b m n ) A+B= \begin{pmatrix} a_{11} + b_{11} & a_{12}+b_{12} & ... & a_{1n}+b_{1n}\\ a_{21}+b_{21} & a_{22}+ b_{22} & ... & a_{2 n}+b_{2 n} \\ ... & ... & ... & ...&\\ a_{m1}+b_{m1} & a_{m2}+b_{m2} & ... & a_{mn}+b_{mn} \\ \end{pmatrix} A+B=a11+b11a21+b21...am1+bm1a12+b12a22+b22...am2+bm2............a1n+b1na2n+b2n...amn+bmn
注意:只有当两个矩阵是同型矩阵时,这两个矩阵才能进行加法运算。

矩阵加法满足下列运算规律(设A、B、C都是m*n矩阵)
A + B = B + A A+B=B+A A+B=B+A
( A + B ) + C = A + ( B + C ) (A+B)+C=A+(B+C) (A+B)+C=A+(B+C)

设矩阵 A = ( a i j ) A=(a_{ij}) A=(aij),记
− A = − a i j -A = -a_{ij} A=aij

-A称为矩阵A的负矩阵,显然有
A + ( − A ) = 0 A+(-A)=0 A+(A)=0
由此规定矩阵的减法
A − B = A + ( − B ) A-B=A+(-B) AB=A+(B)

3.2 数与矩阵相乘

定义2: λ \lambda λ与矩阵A的乘积记作 λ \lambda λA或A λ \lambda λ,记作:
λ A = A λ = ( λ a 11 λ a 12 . . . λ a 1 n λ a 21 λ a 22 . . . λ a 2 n . . . . . . . . . . . . λ a m 1 λ a m 2 . . . λ a m n ) \lambda A=A\lambda = \begin{pmatrix} \lambda a_{11} & \lambda a_{12} & ... &\lambda a_{1n}\\ \lambda a_{21} & \lambda a_{22} & ... &\lambda a_{2 n} \\ ... & ... & ... & ...&\\ \lambda a_{m1}& \lambda a_{m2} & ... &\lambda a_{mn} \\ \end{pmatrix} λA=Aλ=λa11λa21...λam1λa12λa22...λam2............λa1nλa2n...λamn
数乘矩阵满足下列运算规律(设A、B都是m*n矩阵, λ \lambda λ μ \mu μ为常数)
①( λ \lambda λ μ \mu μ)A = λ \lambda λ( μ \mu μA)
②( λ \lambda λ + μ \mu μ)A = λ \lambda λA + μ \mu μA
λ \lambda λ(A + B) = λ \lambda λA + λ \lambda λB

矩阵加法数乘矩阵统称为矩阵的线性运算

3.3 矩阵与矩阵相乘

暂略

3.4 矩阵的转置

定义:把矩阵A的换成同序数的得到一个新的矩阵,叫做A的转置矩阵,记作 A T A^T AT
栗子:
例如矩阵A
A = ( 1 2 0 3 − 1 1 ) A = \begin{pmatrix} 1 & 2& 0\\ 3 &-1 & 1 \\ \end{pmatrix} A=(132101)
矩阵 A T A^T AT
A T = ( 1 3 2 − 1 0 1 ) A^T = \begin{pmatrix} 1 &3\\ 2 &-1\\ 0 & 1\\ \end{pmatrix} AT=120311

3.4.1 矩阵转置的运算规律

矩阵的转置也算是一种运算,矩阵的转置满足下述运算规律
( A T ) T = A (A^T)^T=A (AT)T=A
( A + B ) T = A T + B T (A+B)^T=A^T+B^T (A+B)T=AT+BT
( λ A ) T = λ A T (\lambda A)^T=\lambda A^T (λA)T=λAT
( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT(注意,顺序不能反)

补充:
如果 A T = A A^T=A AT=A,那么A称为对称矩阵,简称对称阵
对称矩阵的特点是,它的元素以对角线为对称轴对应相等

如果如果 A = − ( A T ) A=-(A^T) A=(AT),那么A称为反对称矩阵

4. 方阵的行列式

注意:方阵(n*n的矩阵)和行列式是两个不同的概念,n阶方阵 n 2 n^2 n2个数按一定方式排列的数表,而n阶行列阵则是这些数(也就是数表A)按一定的运算法则所确定的一个数

方阵行列式的运算规律:
∣ A T ∣ = ∣ A ∣ |A^T|=|A| AT=A
∣ λ A ∣ = λ n ∣ A ∣ |\lambda A|=\lambda ^n|A| λA=λnA
∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB|=|A||B| AB=AB

4.1 伴随矩阵

伴随矩阵:行列式|A|的各个元素的代数余子式 A i j A_{ij} Aij所构成的矩阵.
伴随矩阵的特性
A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=|A|E AA=AA=AE

5.逆矩阵

定义: 对于n阶矩阵A,如果有一个n阶矩阵B,使
A B = B A = E AB=BA=E AB=BA=E

则说矩阵A是可逆的,并把矩阵B称为A的逆矩阵
如果矩阵A是可逆的,那么A的逆矩阵是唯一的。

定理1:若矩阵A可逆,则|A|不等于0。
定理2:若|A|不等于0,则矩阵A可逆,且
A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\frac{1}{|A|}A^* A1=A1A

5.1逆矩阵的的运算规律

逆矩阵的的运算规律:
①若A可逆,则 A − 1 A^{-1} A1可逆,且 ( A − 1 ) − 1 = A (A^{-1})^{-1}=A (A1)1=A
②若A可逆,数 λ \lambda λ不等于0,则 λ A \lambda A λA可逆,且 ( λ A ) − 1 = 1 λ A − 1 (\lambda A)^{-1} = \frac{1}{\lambda}A^{-1} (λA)1=λ1A1
③若A、B为同阶矩阵且均可逆,则AB亦可逆,且 ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值