线性代数 行列式

本文详细介绍了线性代数中的行列式,包括二阶和三阶行列式的定义、计算方法,以及行列式的性质。通过排列、逆序的概念解释了行列式的展开法则,如拉普拉斯展开,并探讨了特殊行列式和Cramer法则。此外,文章还提供了多个例题解析,帮助理解行列式的计算技巧。
摘要由CSDN通过智能技术生成

文章目录

1 二阶三阶行列式

1.1 二阶行列式

2 2 2 2 2 2 4 4 4 个元素

a i j a_{ij} aij

i i i 为行标, j j j 为列标

∣ a 11 a 12 a 21 a 22 ∣ = a 11 a 22 − a 12 a 21 \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} a_{22} - a_{12} a_{21} a11a21a12a22=a11a22a12a21

主对角线: 左上角到右下角

次(副)对角线: 右上角到左下角

行列式的值为: 主对角线的乘积 - 次(副)对角线的乘积

1.2 三阶行列式

∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 − a 13 a 22 a 31 − a 12 a 21 a 33 − a 11 a 23 a 32 \begin{vmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{13} a_{22} a_{31} - a_{12} a_{21} a_{33} - a_{11} a_{23} a_{32} a11a21a31a12a22a32a13a23a33=a11a22a33+a12a23a31+a13a21a32a13a22a31a12a21a33a11a23a32
三正 三负 六项

1.3 排列与逆序

1.3.1 排列

1 , 2 , ⋯   , n 1, 2, \cdots, n 1,2,,n 组成的一个有序数组叫 n n n 级排列

(中间不能缺数)

n n n 级排列共有 n ( n − 1 ) ⋯ 2 × 1 = n ! n(n - 1) \cdots 2 \times 1 = n! n(n1)2×1=n!

N ( 1234 ⋯ n ) = 0 N(1234 \cdots n) = 0 N(1234n)=0 标准(自然)排列

1.3.2 逆序

大数排在小数的前面

1.3.3 逆序数

有序数组中逆序的总数,用 N ( ) N() N() 表示

N ( 4213 ) = 3 + 1 + 0 + 0 = 4 N(4213) = 3 + 1 + 0 + 0 = 4 N(4213)=3+1+0+0=4

数逆序数方法:

  • 从第一个开始,挨个数后面有几个比它小的
  • 切记顺序不能乱

1.3.4 对换

交换有序数组中的两个数

逆序数为奇数的排列叫做奇排列

逆序数为偶数的排列叫做偶排列

一个排列经过一次对换,排列的奇偶性会变换

定理:在 n n n 级排列中,奇排列和偶排列各占 n ! 2 \frac{n!}{2} 2n!

2 n阶行列式

2.1 定义

2.1.1 按行展开

行标取标准排列

列标取排列的所有可能,从不同行不同列取出 n n n 个元素相乘,符号由列标排列的奇偶性决定

∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ = Σ j 1 ⋯ j n ( − 1 ) N ( j 1 j 2 ⋯ j n ) a 1 j 1 a 2 j 2 ⋯ a n j n \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n}\\ \vdots & \vdots & & \vdots\\ a_{n1} & a_{n2} & \cdots & a_{nn}\\ \end{vmatrix} = \Sigma _ {j _1 \cdots j_n} (-1) ^ {N(j_1 j _2 \cdots j_n )} a_{1 j_1} a_{2 j_2} \cdots a_{n j_n} a11a21an1a12a22an2a1na2nann=Σj1jn(1)N(j1j2jn)a1j1a2j2anjn

D = ∣ a i j ∣ D = |a_{ij}| D=aij

2.1.2 按列展开

与按行展开同理

2.1.3 特殊展开(既不按行也不按列)

D = Σ ( − 1 ) N ( i 1 i 2 ⋯ i n ) + N ( j 1 j 2 ⋯ j n ) a i 1 j 1 a i 2 j 2 ⋯ a i n j n D = \Sigma(-1)^{N(i_1 i_2 \cdots i_n) + N(j_1 j_2 \cdots j_n)} a_{i_1 j_1} a_{i_2 j_2} \cdots a_{i_n j_n} D=Σ(1)N(i1i2in)+N(j1j2jn)ai1j1ai2j2ainjn

2.2 特殊行列式

下三角行列式

∣ a 11 0 ⋯ 0 a 21 a 22 ⋯ 0 ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ = a 11 a 22 ⋯ a n n \begin{vmatrix} a_{11} & 0 & \cdots & 0\\ a_{21} & a_{22} & \cdots & 0\\ \vdots & \vdots & & \vdots\\ a_{n1} & a_{n2} & \cdots & a_{nn}\\ \end{vmatrix} = a_{11} a_{22} \cdots a_{nn} a11a21an10a22an200ann=a11a22ann

下三角行列式的值 等于 主对角线元素相乘

∣ 0 0 ⋯ a 1 n 0 0 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ = ( − 1 ) N ( n ( n − 1 ) ⋯ 1 ) a 1 n a 2 ( n − 1 ) ⋯ a n 1 \begin{vmatrix} 0 & 0 & \cdots & a_{1n}\\ 0 & 0 & \cdots & a_{2n}\\ \vdots & \vdots & & \vdots\\ a_{n1} & a_{n2} & \cdots & a_{nn}\\ \end{vmatrix} = (-1) ^ {N(n (n - 1) \cdots 1 )} a_{1n} a_{2(n - 1)} \cdots a_{n1} 00an100an2a1na2na

  • 2
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值