基于遥感的海岸线变化监测研究毕业论文【附数据】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。



(1)海岸线提取方法的设计与实现 本研究首先在ENVI环境下对大连市海岸线的不同类型地物特征进行了详细分析,并建立了遥感解译标志。针对大连市海岸线的不同类型,如砂质岸线、淤泥质海岸、基岩海岸和人工海岸,根据它们在遥感影像上的光谱及纹理特征,设计了差异化的影像预处理方案。例如,对于砂质岸线,利用MNDWI(最小噪声水域指数)方法增强干燥滩面和潮湿滩面的差异,以提高提取精度;对于已开发利用的淤泥质海岸,通过纹理分析突出其边缘特征;而对于基岩海岸和人工海岸,则采用高通滤波来增强海岸轮廓特征。经过预处理后,结合Canny边缘检测算子自动提取岸线。对于未开发利用的淤泥质海岸,通过形态学运算去除潮滩中的无关暗色区域,并结合C-V模型算法提高提取精度及连续性。通过精度验证分析,确保了提取的海岸线精度控制在两个像素误差范围内。

(2)大连市海岸线变化特征分析 研究时段内,大连市海岸线的变化特征明显。从1990年到2000年,大连市海岸线快速缩短,总计缩短了142.3公里。2000年之后,海岸线长度变化经历了从缓慢增加到快速增加,最后趋于平缓的发展态势。总体上,人工岸线逐年增加,而自然岸线逐年缩短。空间分布上,大连长兴岛和庄河附近海域的岸线变化较为显著。这些变化不仅反映了自然因素对海岸线的影响,也体现了人类活动对海岸线形态的改造作用。

(3)大连市围填海区域变化监测 自1990年以来,大连市围填海区域持续向海洋扩张,总变化量达到了510.82平方公里。特别是2006年至2012年间,围填海累计增长面积达到了新的高峰,占24年来总增加量的41%。这一变化不仅对海洋生态环境产生了影响,也对沿海地区的社会经济发展产生了深远的影响。通过对围填海区域的持续监测,可以为海岸线管理和规划提供科学依据。

 

 
# 假设使用Python语言和GDAL库处理遥感影像

from osgeo import gdal, osr
import numpy as np

# 打开遥感影像文件
def open_image(image_path):
    dataset = gdal.Open(image_path)
    if dataset is None:
        print("Failed to open image.")
        return None
    return dataset

# 应用MNDWI方法提取水体
def apply_mndwi(dataset):
    # 读取绿光和近红外波段
    green_band = dataset.GetRasterBand(2).ReadAsArray()
    nir_band = dataset.GetRasterBand(4).ReadAsArray()
    
    # 计算MNDWI
    mndwi = (nir_band - green_band) / (nir_band + green_band)
    
    return mndwi

# 应用Canny边缘检测
def apply_canny_edge_detection(image, low_threshold, high_threshold):
    from scipy import ndimage
    
    # 将图像转换为灰度
    gray_image = np.mean(image, axis=0)
    
    # 应用Canny边缘检测
    edges = ndimage.sobel(gray_image, axis=0, mode='constant')
    edges = (edges > low_threshold) & (edges < high_threshold)
    
    return edges

# 主函数
def main():
    # 打开影像文件
    image_path = 'path_to_your_image.tif'
    dataset = open_image(image_path)
    
    if dataset is not None:
        # 应用MNDWI
        mndwi_result = apply_mndwi(dataset)
        
        # 应用Canny边缘检测
        edges = apply_canny_edge_detection(mndwi_result, 0.1, 0.3)
        
        # 保存边缘检测结果
        driver = gdal.GetDriverByName('GTiff')
        dst_ds = driver.Create('edges.tif', dataset.RasterXSize, dataset.RasterYSize, 1, gdal.GDT_Byte)
        dst_ds.GetRasterBand(1).WriteArray(edges.astype(np.uint8))
        dst_ds.FlushCache()

if __name__ == "__main__":
    main()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值