离散数学笔记整理(个人向)

1. 集合

1.1. 概念

  • 等势:A、B两集合间存在一一对应的关系,则称A与B等势,记为 A ~ B。
  • 可数集合:与自然数集合N等势的集合。集合基数为阿列夫零。包括:正奇数集合,质数集合,有理数集合Q。
  • 不可数集合:与开区间(0, 1)等势的集合。集合基数为阿列夫。

集合A的基数记为card A

1.2. 特殊集合

自然数集N,有理数集Q,实数集R,空集∅,全集E,A的幂集P(A) = {x | x ⊆ A}

当A = ∅时,P(A) = {∅}

1.3. 集合运算

  • 异或(对称差):去掉两个集合交集的元素,再并起来

2. 命题逻辑

2.1. 联结词

在这里插入图片描述

  1. 蕴涵联结词:P → Q

    • 如果P,则Q
    • 因为P,所以Q
    • 只要P,就Q
    • P仅当Q
    • 只有Q,才P
    • 除非Q,才P
    • 除非Q,否则¬P
  2. 优先级:否定、合取∧、析取∨、蕴涵、等价

    ps. 当两个命题不同时成立时,异或可以用析取表示

2.2. 命题公式

分类:重言式(永真)、矛盾式(永假)、可满足式(有真)

2.3. 等价关系

  • 等值式:若A ↔ B是重言式,则记为等值式A ⇔ B,也即A与B等价。
  • 吸收律:G ∧ (G ∨ H) = G;G ∨ (G ∧ H) = G
  • 蕴涵式:G → H = ¬G ∨ H
  • 等价式:G ↔ H = (G → H) ∧ (H → G)

2.4. 范式

  • 文字:命题变元或命题变元的否定
  • 子句:文字析取构成
  • 短语:文字合取构成
  • 析取范式:由短语析取构成
  • 合取范式:由子句合取构成
  • 主析取范式:极小项,文字默认为真,真值表找1
  • 主合取范式:极大项,文字默认为假,真值表找0

2.5. 推理

基本推理形式
  • 推理有效:前提都为真,则结论为真。
  • 判定定理:A₁,A₂,…,An → B为重言式,当且仅当A₁,A₂,…,An ⇒ B有效。
  • 证明有效:
    1. 真值表法
    2. 等值演算法
    3. 主析取范式法(包含所有极小项则为重言式)
自然演绎法
  • 概念:给若干前提,推出一个结论

  • 推理定律:

    1. 附加律:A ⇒ A ∨ B或B ⇒ A ∨ B
    2. 简化律:A ∧ B ⇒ A或A ∧ B ⇒ B
    3. 假言推理:A → B,A ⇒ B
    4. 拒取式:A → B,¬B ⇒ ¬A
    5. 析取三段论:A ∨ B,¬B ⇒ A
    6. 假言三段论:A → B,B → C ⇒ A → C
    7. 构造性二难:A → B,C → D,A ∨ C ⇒ B ∨ D
    8. 破坏性二难:A → B,C → D,¬B ∨ ¬D ⇒ ¬A ∨ ¬C
    9. 合取引入:A,B ⇒ A ∧ B
  • 推理规则(自然推理系统):

    1. 规则P(前提引入规则):推导过程中,可随时引入前提集合中任一个集合。
    2. 规则T(结论引入规则):推导过程中,可随时引入由一个或多个前提推导出来的中间结果。
    3. 规则CP(置换规则):如果能由前提集合Γ与公式P推出结论S,则能由Γ推出P → S。
    4. 上面八条推理定律形成的规则
  • 证明推理:

    1. 直接证明法
    2. 附加前提证明法:用规则CP
    3. 归谬证明法(反证法):将结论否定式作为前提,用直接证明法推出矛盾式。原理如下:
      ① 若证A₁,A₂,…,An ⇒ B
      ② 即证A₁,A₂,…,An → B为重言式
      ③ 又由蕴涵式:¬(A₁ ∧ A₂ ∧ … ∧ An) ∨ B为重言式
      ④ 由反证法:A₁ ∧ A₂ ∧ … ∧ An ∧ ¬B为矛盾式。

3. 谓词逻辑

3.1. 概念

  • 个体、谓词、量词

  • ∀x(P(x) → Q(x)):在个体域D中的任意x,如果其有性质P,则其就有性质Q。

    1. x是个体变元
    2. ∀x是全称量词(全称用→,存在用∧)
    3. P、Q是谓词,也被称为原子公式

    例:所有人都会说话。P:x是人。Q:x会说话。

  • 公式:全称合式公式,原子公式是合式公式,¬P,P∨Q,P∧Q,P→Q,P↔Q都为合式公式,带量词的合式公式也是合式公式。

  • 约束变元:个体变元x在使用变元x量词的辖域内,则称x为约束变元。

  • 自由变元:不在辖域内则成为自由变元。

  • 闭式:一个公式内无自由变元,则称该公式为闭式。

3.2. 谓词公式

分类:永真式(逻辑有效式)、矛盾式(永假式)、可满足式

3.3. 公式等价关系

  • 等价:若公式P ↔ Q是永真式,则P ⇔ Q是等值式,也即公式P与公式Q等价。
  • 共有:命题公式的等价关系在谓词公式中依然成立。
  • 特有:P、Q含有变元x,S不含变元x
    1. 改名规则:∀xP(x) = ∀yP(y);存在量词同理
    2. 量词转换律:¬∀xP(x) = ∃x¬P(x);¬∃xP(x) = ∀x¬P(x)
    3. 量词辖域扩展/收缩律:
      • ∀x(P(x) ∧ S) = ∀xP(x) ∧ S;析取同理,存在量词同理。
      • ∀x(P(x) → S) = ∃xP(x) → S;存在量词同理。
      • ∀x(S → P(x)) = S → ∀xP(x);存在量词同理。
    4. 量词分配律:
      • ∀x(P(x) ∧ Q(x)) = ∀xP(x) ∧ ∀xQ(x)
      • ∃x(P(x) ∨ Q(x)) = ∃xP(x) ∨ ∃xQ(x)
    5. 无法用量词分配的情况:
      • ∀xP(x) ∨ ∀xQ(x) = ∀x(∀y)(P(x) ∨ Q(y))
      • ∃xP(x) ∧ ∃xQ(x) = ∃x∃y(P(x) ∧ Q(y))

3.4. 范式

  • 前束范式:将¬内移到原子公式前,量词在公式最前端。利用谓词公式等价关系将一个公式转化成前束范式。

    ps. 根据量词的辖域可以利用改名规则

3.5. 推理

推理形式
  • 判定定理:类比于命题推理,A₁,A₂,…,An → B为永真式,当且仅当A₁,A₂,…,An ⇒ B有效。
推理定律
  1. 命题的推理定律仍适用于谓词推理
  2. 每个谓词逻辑的基本等值式,都可以推出两条推理定律,如由¬∀xP(x) = ∃x¬P(x):
    ¬∀xP(x) ⇒ ¬P(x);¬P(x) = ¬∀xP(x)
  3. 两条特殊的定律:
    • ∀xP(x) ∨ ∀xQ(x) ⇒ ∀x(P(x) ∨ Q(x))
    • ∃x(P(x) ∧ Q(x)) ⇒ ∃xP(x) ∧ ∃xQ(x) 合取的存在推出存在的合取
推理规则(自然推理系统)
  1. 命题中的所有推理规则
  2. UI(全称消去规则,用于消去全称量词):∀xP(x) ⇒ P©,c为任意个体常量;或∀xP(x) ⇒ P(y),不产生歧义即可。
  3. EI(存在消去规则):
    • ∃xP(x) ⇒ P©,c为使P©为真的特定个体常量
    • ∃xP(x, y) ⇒ P(f(y), y)
  4. UG(全称引入规则,用于引入全称量词):P(y) ⇒ ∀xP(x),不产生歧义即可
  5. EG(存在引入规则):P© ⇒ ∃xP(x),c为特定个体常量;或P(x) ⇒ ∃yP(y)
  • 推理过程:消去量词;命题推理;如果结论中有量词,则最后引入量词。
    如果消去量词同时用到了UI和EI,先用EI,再用UI(因为EI中的个体常量必须满足P© = 1,若先用UI,得到的个体常量不一定满足该条件)。
    若一个变量用EI规则消去量词,则其引入量词时只能用EG规则;而采用UI规则消去的,引入量词时UG和EG都可用。这是由规则的性质决定的。

4. 二元关系

4.1. 概念

  • 有序对:<x, y>称为有序对,或序偶。

  • 笛卡尔积:若有集合A,B,则集合A×B = {<x, y>|(x∈A)∧(y∈B)}是集合A与B的笛卡尔积。

    笛卡尔积不满足交换律与结合律,但对并交运算满足分配律。
    ∅与任意集合的笛卡尔积都是空集。

  • 二元关系:要么是空集,要么是元素为有序对的集合,记为R。若<x, y>∈R,则记作xRy。A与B间关系的种类为 2 ∣ A ∣ ⋅ ∣ B ∣ 2^{|A|\cdot|B|} 2AB,A上的关系的种类为 2 ∣ A ∣ ² 2^{|A|²} 2A²
    R的定义域domR,值域ranR,域fldR = domR ∪ ranR;A称为前域,B为后域。

  • 几个重要关系:

    1. R = ∅,则R为空关系
    2. R = A×B,则R为A到B的全关系,记为 E A E_{A} EA
    3. R = I A I_{A} IA = {<x, x>|x∈A},则R为A上的恒等关系
  • 关系表示:枚举、图形、关系矩阵(是布尔矩阵)

4.2. 关系运算

  • 布尔矩阵运算:交∧、并∨、积⊙(矩阵乘法)

  • 关系运算:

    1. 并∪、交∩、差-、补。
    2. 复合R ◦ S:<x, y> ◦ <y, z> = <x, z>,是从A到C的关系;R和S关系矩阵作布尔积运算,得到结果即为R ◦ S的关系矩阵。
    3. R − 1 R^{-1} R1:<x, y>变为<y, x>;R的关系矩阵转置即为R的逆。
    4. 限制 R ↑ \uparrow A = {<x, y> | x ∈ A ∧ xRy}
    5. 像 R[A] = ran(R | A)
  • 运算性质:

    1. 复合运算结合律与同一律( I A I_{A} IA ◦ R = R ◦ I A I_{A} IA = R)
    2. 复合分配律:
      • R ◦ (S ∪ T) = R ◦ S ∪ R ◦ T,左复合同理
      • R ◦ (S ∩ T) ⊆ R ◦ S ∩ R ◦ T,左复合同理
    3. 逆运算:
      • ( R ◦ S ) − 1 (R ◦ S)^{-1} (RS)1 = S − 1 S^{-1} S1 R − 1 R^{-1} R1
      • ( R ∪ S ) − 1 (R ∪ S)^{-1} (RS)1 = R − 1 R^{-1} R1 S − 1 S^{-1} S1,交和差同理
      • domR = r a n R − 1 ranR^{-1} ranR1,反之同理
    4. 幂运算:
      • R⁰ = I A I_{A} IA
      • R m + n R^{m+n} Rm+n = R m R^{m} Rm R n R^{n} Rn
      • ( R m ) n (R^{m})^{n} (Rm)n = R m n R^{mn} Rmn
      • 收敛性
        在这里插入图片描述

4.3. 关系性质

  • 五个性质
    在这里插入图片描述

    一个关系能同时具有多个性质,如 I A I_{A} IA同时具有自反性,对称性,反对称性,传递性。

  • 性质的保守性

    1. R,S自反, R − 1 R^{-1} R1、R ∩ S、R ∪ S、R ◦ S也自反
    2. R,S反自反, R − 1 R^{-1} R1、R ∩ S、R ∪ S、R - S也反自反
    3. R,S对称, R − 1 R^{-1} R1、R ∩ S、R ∪ S、R - S也对称
    4. R,S反对称, R − 1 R^{-1} R1、R ∩ S、R - S也反对称
    5. R,S传递, R − 1 R^{-1} R1、R ∩ S也传递
  • 闭包

    1. 定义:为使关系R满足所需要的性质,向R中尽可能少的添加元素,得到关系R’,使R’满足该性质,R’即为闭包。自反闭包记为r®,对称闭包记为s®,传递闭包记为t®
    2. 用关系运算求闭包:
      • r® = R ∪ I A I_{A} IA
      • s® = R ∪ R − 1 R^{-1} R1
      • t®利用上述收敛性公式求

4.4. 特殊关系

等价关系
  • 等价关系:A上自反,对称,传递的关系。

  • 等价类:设R为A上的一个等价关系,x∈R,则满足{y | y ∈ A ∧ xRy}的集合称为x的等价类,记为 [ x ] R [x]_{R} [x]R,可简记为[x]。即x的等价类就是所有满足xRy的,y的集合。

  • 等价类的性质:

    1. [x]非空
    2. 若xRy,则[x] = [y];否则[x] ∩ [y] = ∅
    3. ∪{[x] | x ∈ A} = A
  • 商集:{ [ x ] R [x]_{R} [x]R | x ∈ A},称为A关于R的商集,记作A / R。即A所有等价类的集合。

  • 集合的划分:将集合的元素划分,商集就是对A的一个划分,也称由R导出的等价划分。
    一个集合有多种划分,不同等价关系导出不同的划分;且可由划分确定一个等价关系,假设有划分{S₁, S₂, …, S n S_{n} Sn},则对应的等价关系为{(S₁ × S₁) ∪ (S₂ × S)₂ ∪ … ∪ ( S n × S n S_{n} × S_{n} Sn×Sn)}。

偏序关系
  • 偏序关系:A上自反,反对称,传递的关系R,记为≼,并将<a, b> ∈ ≼记为a ≼ b,<A, ≼>称为偏序集。该关系一般用于排序,因此是反对称的,典型的关系就是实数集上的小于等于关系。

  • 可比:x ≼ y或y ≼ x则称x与y可比。

  • 覆盖:当x ≼ y,且不存在z,使得x ≼ z ≼ y,则称y覆盖x。

  • 哈斯图:本质就是采用一些规则化简关系图

    1. 取消每个点自环(因为自反性)
    2. 取消由传递性产生的边
    3. 重新排列每条边,使得箭头方向均朝上,然后去掉箭头(因为反对称性)
  • 特殊元素:设<A, ≼>是偏序集,B是A的一个子集

    1. 最大元与最小元:∃b ∈ B,对∀x ∈ B,都有x ≼ b(b ≼ x),则称b为最大元(最小元)。

      必须与集合内其他元素都可比,且最大或最小。
      从哈斯图上看,单独的最高点(最低点)才是最大元(最小元)。

    2. 极大元与极小元:∃b ∈ B,对∀x ∈ B,不存在b ≺ x(x ≺ b),则称b为极大元(极小元)。

      在与其可比元素构成的集合内最大或最小。
      从哈斯图上看,只要处于子集的最高点(最低点),就都是极大元(极小元)。

    3. 上界与下界:∃a ∈ A,对∀x ∈ B,都有x ≼ a(a ≼ x),则称a为B的上界(下界)。a可以有多个。
    4. 上确界和下确界:上界(下界)的最小元(最大元),它们是唯一的。
  • 拟序关系:A上反自反,反对称,传递的关系,用≺表示

  • 全序关系:若偏序集<A, ≼>任意的x和y都可比,则称“≼”为全序关系,<A, ≼>为全序集,或线序集(因为哈斯图的元素排成一条线)

4.5. 函数

  • 定义:设f是集合A到B的关系,且对∀x ∈ A,都存在惟一的y ∈ B,使得<x, y> ∈ f,则称f是A到B的函数,记为 f: A → B。

    定义域(原像)domf = A;值域(像)ranf = B。

  • 函数的两个前提:domf中任意元素都有像;domf中同一元素有且仅有一个像。

  • 关系与函数的区别:

    区别 种数 基数 第一元素
    关系 2 ∥ A ∥ × ∥ B ∥ 2^{\|A\|×\|B\|} 2A×B 0 ~ |A|×|B| 可重复
    函数 ∥ B ∥ ∥ A ∥ \|B\|^{\|A\|} BA |A| 不可重复
  • 特殊函数:

    1. 特征函数:设A为集合,对∀A’ ⊆ A,A’的特征函数 χ A ′ : A → { 0 , 1 } \chi_{A'}:A\to\{0,1\} χA:A{ 0,1}定义为
      χ A ′ ( a ) = { 1 , a ∈ A ′ 0 , a ∈ A − A ′ \chi_{A'}(a)= \begin{cases} 1,\qquad a\in A' \\ 0,\qquad a\in A-A' \end{cases} χA(a)={ 1,aA0,aAA
  • 函数类型:

    1. 单射:x与y一一对应;单射 ⇔ 对∀x₁,x₂ ∈ A,若x₁ ≠ x₂,则f(x₁) ≠ f(x₂)。
    2. 满射:ranf = B;满射 ⇔ 对∀y ∈ B,一定∃x ∈ A,使得f(x) = y。
    3. 双射:f单射且满射。
  • 函数运算

    1. 复合:设有函数 f: A → B,g: B → C,则 f ◦ g: A → C。
      • f ◦ g(x) 也记为g(f(x))
      • dom(f ◦ g) = domf;ran(f ◦ g) = ranf
      • 复合运算不满足交换律,但满足结合律
      • 复合的保守性:相同类型的函数复合后还是同一类型
    2. 逆: f − 1 f^{-1} f1: B → A
      • f − 1 f^{-1} f1存在 ⇔ f是双射函数。(其实就是高数上的严格单调函数必有反函数)
      • f ◦ f − 1 = I A f ◦ f^{-1} = I_{A} ff1=IA f − 1 ◦ f = I B f^{-1} ◦ f = I_{B} f1f=IB
    3. B上A:从A到B全体函数的集合,记为 B A B^{A} BA

5. 图(G = <V, E>)

5.1. 概念

  • 分类:有向图和无向图,多重图和线图(简单图是无环的线图),赋权图和无权图。

    环就是自环;圈是回路

  • 各种图
    1. 零图:孤立结点组成的图。
    2. 平凡图:只有一个结点的零图。
    3. 子图:G₁ = <V₁, E₁>,V₁ ⊆ V,E₁ ⊆ E,则G₁为G的子图。
      • 生成子图:V₁ = V,E₁ ⊆ E
      • 导出子图:V₁ ⊆ V,E₁是以V₁中两个点为端点的边集
    4. 完全图:任意两点都有边相连,记为 K n K_{n} Kn(有向情况下为两条相反的边)。
    5. 补图:设简单图G = <V, E>,完全图G’ = <V, E₁>,则补图G₁ = <V, E₁ - E>。即从完全图的边集中删去简单图的边集。
    6. 同构图:若存在双射函数 f: V → V’,且对应边集相同,则称为同构图,记为G ≌ G’。

      简单而言就是一个图顶点挪动位置后形成的新图,都算同构图。

    7. 正则图:对∀v ∈ V,都有d(v) = k,则称G为 k-正则图。
    8. 竞赛图:为无向完全图的每条边分配方向所形成的图。
    9. 轮图:在n-1阶的圈内放置一个顶点,与各顶点相连,组成的就是n阶轮图,记为 W n W_{n} Wn
  • 度:顶点的度记为d(v),出度为 d + d^{+} d
  • 14
    点赞
  • 187
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
离散数学笔记 1. 集合 集合是离散数学的基础概念之一。一个集合是由一些元素组成的,这些元素可以是数、字母、符号、图形等等。 - 集合的表示方法 集合可以用大括号{}表示,元素之间用逗号隔开。例如,{1,2,3,4}表示一个由1、2、3、4四个元素组成的集合。 - 集合的基本运算 并集:表示集合A和集合B中所有元素的集合,用符号∪表示。例如,A={1,2,3},B={3,4,5},则A∪B={1,2,3,4,5}。 交集:表示同时属于集合A和集合B的元素的集合,用符号∩表示。例如,A={1,2,3},B={3,4,5},则A∩B={3}。 差集:表示属于集合A但不属于集合B的元素的集合,用符号-表示。例如,A={1,2,3},B={3,4,5},则A-B={1,2}。 补集:表示集合A中不属于集合B的元素的集合,用符号A-B表示。例如,A={1,2,3},B={3,4,5},则A-B={1,2}。 2. 命题逻辑 命题逻辑是一种研究命题之间的逻辑关系和推理规律的数学分支。命题是指可以判断真假的陈述句。 - 命题的表示方法 命题可以用字母或符号表示。例如,P表示“今天是星期天”。 - 命题的逻辑运算 非运算:表示取反,用符号¬表示。例如,¬P表示“今天不是星期天”。 合取运算:表示“且”,用符号∧表示。例如,P∧Q表示“今天是星期天并且明天是星期一”。 析取运算:表示“或”,用符号∨表示。例如,P∨Q表示“今天是星期天或者明天是星期一”。 蕴含运算:表示“如果……那么”,用符号→表示。例如,P→Q表示“如果今天是星期天,那么明天是星期一”。 等价运算:表示两个命题具有相同的真值,用符号↔表示。例如,P↔Q表示“今天和明天都是星期天”。 3. 谓词逻辑 谓词逻辑是一种研究谓词之间的逻辑关系和推理规律的数学分支。谓词是指可以应用于一个或多个对象的属性或关系。 - 谓词的表示方法 谓词可以用字母或符号表示。例如,A(x)表示“x是一个人”。 - 谓词的逻辑运算 量词:表示谓词适用于某些对象或全部对象。有普遍量词∀和存在量词∃两种。例如,∀x A(x)表示“所有的x都是人”,∃x A(x)表示“存在一个x是人”。 连接词:表示谓词之间的逻辑关系。有合取词∧、析取词∨、蕴含词→、等价词↔等四种。例如,A(x)∧B(x)表示“x既是人又是男性”,A(x)∨B(x)表示“x是人或者x是男性”。 4. 图论 图论是一种研究图和图的性质的数学分支。图是由点和边组成的结构,点表示对象,边表示对象之间的关系。 - 图的基本概念 无向图:所有的边没有方向。 有向图:所有的边有方向。 简单图:没有自环和重边的图。 完全图:每个点都与其他点有边相连的图。 - 图的基本运算 路径:表示通过边相连的一系列点的序列。 回路:表示起点和终点相同的路径。 连通图:表示任意两个点之间都存在路径的图。 强连通图:表示任意两个点之间都存在有向路径的图。 生成树:表示包含所有点和最少边的树。 最短路径:表示两个点之间边权和最小的路径。 5. 组合数学 组合数学是一种研究离散结构之间的组合关系和计数方法的数学分支。 - 排列组合 排列:从n个不同元素中取出m个元素进行排列的方式数,用符号P(n,m)表示。 组合:从n个不同元素中取出m个元素进行组合的方式数,用符号C(n,m)表示。 - 二项式定理 二项式定理是组合数学中的一个重要公式,表示(a+b)^n的展开式中各项系数的规律。其公式为: (a+b)^n=C(n,0)a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 + … + C(n,n)b^n 其中C(n,m)表示从n个不同元素中取出m个元素进行组合的方式数。 - 错排问题 错排问题是组合数学中的一个经典问题,表示n个元素的排列中,恰好有m个元素排列正确的方式数。其公式为: D(n,m)=(n-m)(D(n-1,m-1)+D(n-2,m-1)) 其中D(n,m)表示n个元素的排列中,恰好有m个元素排列正确的方式数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值