概率论期末

常见分布

离散分布

分布X概率期望方差
二项分布 B ( n , p ) B(n,p) B(n,p) P ( X = k ) = ( n k ) p k ( 1 − p ) n − k P(X=k)=\binom{n}{k}p^k(1-p)^{n-k} P(X=k)=(kn)pk(1p)nk n p np np n p ( 1 − p ) np(1-p) np(1p)
泊松分布 P ( λ ) P(\lambda) P(λ) p ( X = k ) = λ k / k ! e − λ , k ∈ N p(X=k)=\lambda^k/k!e^{-\lambda},k\in N p(X=k)=λk/k!eλ,kN λ \lambda λ λ \lambda λ
几何分布 G e ( p ) Ge(p) Ge(p) P ( X = k ) = ( 1 − p ) k − 1 p P(X=k)=(1-p)^{k-1}p P(X=k)=(1p)k1p 1 / p 1/p 1/p ( 1 − p ) / p 2 (1-p)/p^2 (1p)/p2

连续分布

分布X概率期望方差
均与分布 U ( a , b ) U(a,b) U(a,b) f ( x ) = 1 b − a , x ∈ [ a , b ] f(x)=\frac{1}{b-a},x\in[a,b] f(x)=ba1,x[a,b]
正态分布 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2) f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} f(x)=2π σ1e2σ2(xμ)2
指数分布 E ( λ ) E(\lambda) E(λ) f ( x ) = λ e − λ x , x > 0 f(x)=\lambda e^{-\lambda x},x>0 f(x)=λeλx,x>0 1 / λ 1/\lambda 1/λ 1 / λ 2 1/\lambda^2 1/λ2
  • 标准正态分布( N ( 0 , 1 ) N(0,1) N(0,1))的分布函数通常记为 Φ ( x ) \Phi(x) Φ(x),且 Φ ( − x ) = 1 − Φ ( x ) \Phi(-x)=1-\Phi(x) Φ(x)=1Φ(x) Φ ( 0 ) = 1 2 \Phi(0)=\frac{1}{2} Φ(0)=21
    • 对于标准正态分布 Φ ( 1 ) − P h i ( − 1 ) = 0.6826 , Φ ( 2 ) − P h i ( − 2 ) = 0.9544 , Φ ( 3 ) − P h i ( − 3 ) = 0.9974 \Phi(1)-Phi(-1)=0.6826,\Phi(2)-Phi(-2)=0.9544,\Phi(3)-Phi(-3)=0.9974 Φ(1)Phi(1)=0.6826,Φ(2)Phi(2)=0.9544,Φ(3)Phi(3)=0.9974
伽马分布

f ( x ) = λ α Γ ( α ) x α − 1 e − λ x , x ≥ 0 f(x)=\dfrac{\lambda^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\lambda x}, x\ge 0 f(x)=Γ(α)λαxα1eλx,x0

记作 X ∼ G a ( α , λ ) X\sim Ga(\alpha,\lambda) XGa(α,λ),其中 α > 0 , λ > 0 \alpha>0,\lambda>0 α>0,λ>0

Γ ( α ) = ∫ 0 + ∞ x α − 1 e − x d x \Gamma(\alpha)=\int_{0}^{+\infty}x^{\alpha-1}e^{-x}dx Γ(α)=0+xα1exdx

  • Γ ( 1 ) = 1 , Γ ( 1 / 2 ) = π , Γ ( n + 1 ) = n ! \Gamma(1)=1,\Gamma(1/2)=\sqrt{\pi},\Gamma(n+1)=n! Γ(1)=1,Γ(1/2)=π ,Γ(n+1)=n!
贝塔分布

f ( x ) = 1 B ( a , b ) x a − 1 ( 1 − x ) b − 1 , 0 < x < 1 f(x)=\dfrac{1}{B(a,b)}x^{a-1}(1-x)^{b-1},0<x<1 f(x)=B(a,b)1xa1(1x)b1,0<x<1

记作 X ∼ B e ( a , b ) X\sim Be(a,b) XBe(a,b),其中 a > 0 , b > 0 a>0,b>0 a>0,b>0

B ( a , b ) = ∫ 0 1 x a − 1 ( 1 − x ) b − 1 d x B(a,b)=\int_{0}^{1}x^{a-1}(1-x)^{b-1}dx B(a,b)=01xa1(1x)b1dx

  • B ( a , b ) = B ( b , a ) B(a,b)=B(b,a) B(a,b)=B(b,a)
  • B ( a , b ) = Γ ( a ) Γ ( b ) / Γ ( a + b ) B(a,b)=\Gamma(a)\Gamma(b)/\Gamma(a+b) B(a,b)=Γ(a)Γ(b)/Γ(a+b)
  • B ( 1 , 1 ) = U ( 0 , 1 ) B(1,1)=U(0,1) B(1,1)=U(0,1)

对数正态分布

X ∼ N ( μ , σ 2 ) , Y = e X X\sim N(\mu,\sigma^2), Y=e^{X} XN(μ,σ2),Y=eX概率密度函数为

f Y ( y ) = 1 2 π y σ e − ( l n y − μ ) 2 2 σ 2 , y > 0 f_Y(y)=\dfrac{1}{\sqrt{2\pi}y\sigma}e^{-\frac{(lny-\mu)^2}{2\sigma^2}}, y > 0 fY(y)=2π yσ1e2σ2(lnyμ)2,y>0

多维随机变量

边缘密度函数

f X ( x ) = ∫ − ∞ + ∞ f ( x , y ) d y f_X(x)=\int_{-\infty}^{+\infty}f(x,y)dy fX(x)=+f(x,y)dy
f Y ( y ) = ∫ − ∞ + ∞ f ( x , y ) d x f_Y(y)=\int_{-\infty}^{+\infty}f(x,y)dx fY(y)=+f(x,y)dx

随机变量函数

分布的可加性

同分布两个随机变量的和仍是这个分布,则称此类分布可加

  • 如果 X ∼ B ( n 1 , p ) , Y ∼ B ( n 2 , p ) X\sim B(n_1,p),Y\sim B(n_2,p) XB(n1,p),YB(n2,p)且独立,则 X + Y ∼ B ( n 1 + n 2 , p ) X+Y\sim B(n_1+n_2,p) X+YB(n1+n2,p)
  • 如果 X i ∼ B ( 1 , p ) X_i\sim B(1,p) XiB(1,p)且独立,则 X 1 + ⋯ + X n ∼ B ( n , p ) X_1+\cdots+X_n\sim B(n,p) X1++XnB(n,p)
  • X ∼ P ( λ 1 ) , Y ∼ P ( λ 2 ) X\sim P(\lambda_1), Y\sim P(\lambda_2) XP(λ1),YP(λ2)且独立,则 X + Y ∼ P ( λ 1 + λ 2 ) X+Y\sim P(\lambda_1+\lambda_2) X+YP(λ1+λ2),注意 X − Y X-Y XY不服从泊松分布
  • 正态分布 X , Y X,Y X,Y独立, X ± Y ∼ N ( μ 1 ± μ 2 , σ 1 2 + σ 2 2 ) X±Y\sim N(\mu_1±\mu_2,\sigma_1^2+\sigma_2^2) X±YN(μ1±μ2,σ12+σ22)

离散到离散的情况下比较简单

连续到连续或混合

  • 公式法 f Y ( y ) = f X ( h ( y ) ) ⋅ ∣ h ′ ( y ) ∣ , α < y < β , α = min ⁡ ( g ( a ) , g ( b ) ) , β = max ⁡ ( g ( a ) , g ( b ) ) f_Y(y)=f_X(h(y))\cdot |h'(y)|, \alpha < y < \beta, \alpha=\min(g(a),g(b)), \beta=\max(g(a),g(b)) fY(y)=fX(h(y))h(y),α<y<β,α=min(g(a),g(b)),β=max(g(a),g(b)),其中 x = h ( y ) x=h(y) x=h(y) y = g ( x ) y=g(x) y=g(x) ( a , b ) (a,b) (a,b)上的可导反函数, a , b a,b a,b可以是正负无穷
  • 分布函数 F Y ( y ) = P ( Y ≤ y ) = P { g ( X ) ≤ y } ∫ g ( x ) ≤ y f X ( x ) d x F_Y(y)=P(Y\le y)=P\{g(X)\le y\}\int_{g(x)\le y}f_X(x)dx FY(y)=P(Yy)=P{g(X)y}g(x)yfX(x)dx
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值