概率论与数理统计 | (7) 随机变量的期望与方差

目录

1. 随机变量的数学期望

2. 随机变量函数的数学期望

3. 数学期望的性质

4. 方差定义和计算公式


1. 随机变量的数学期望

  • 随机变量的数字特征

1)数学期望

2)方差

3)协方差与相关系数

4)其他数字特征

5)多元正态分布的性质

  • 例题

  • 定义

设离散型随机变量X的分布律为:P(X=x_k)=p_k,k=1,2,...,若级数\sum_{k=1}^{+\infty}x_kp_k绝对收敛,则称级数\sum_{k=1}^{+\infty}x_kp_k的值为随机变量X的数学期望,记为E(X),即:

p_k可以理解为“加权平均”中x_k的权重,数学期望简称期望,又叫均值。

设连续型随机变量X的概率密度函数为f(x),若积分\int_{-\infty}^{+\infty}xf(x)dx绝对收敛(即\int_{-\infty}^{+\infty}|x|f(x)dx<+\infty),则称积分\int_{-\infty}^{+\infty}xf(x)dx的值为随机变量X的数学期望,即:

  • 例题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值