目录
1. 随机变量的数学期望
- 随机变量的数字特征
1)数学期望
2)方差
3)协方差与相关系数
4)其他数字特征
5)多元正态分布的性质
- 例题
- 定义
设离散型随机变量X的分布律为:,若级数
绝对收敛,则称级数
的值为随机变量X的数学期望,记为E(X),即:
可以理解为“加权平均”中
的权重,数学期望简称期望,又叫均值。
设连续型随机变量X的概率密度函数为f(x),若积分绝对收敛(即
),则称积分
的值为随机变量X的数学期望,即:
- 例题
目录
1)数学期望
2)方差
3)协方差与相关系数
4)其他数字特征
5)多元正态分布的性质
设离散型随机变量X的分布律为:,若级数
绝对收敛,则称级数
的值为随机变量X的数学期望,记为E(X),即:
可以理解为“加权平均”中
的权重,数学期望简称期望,又叫均值。
设连续型随机变量X的概率密度函数为f(x),若积分绝对收敛(即
),则称积分
的值为随机变量X的数学期望,即: