概率论与数理统计 | (7) 随机变量的期望与方差

目录

1. 随机变量的数学期望

2. 随机变量函数的数学期望

3. 数学期望的性质

4. 方差定义和计算公式


1. 随机变量的数学期望

  • 随机变量的数字特征

1)数学期望

2)方差

3)协方差与相关系数

4)其他数字特征

5)多元正态分布的性质

  • 例题

  • 定义

设离散型随机变量X的分布律为:P(X=x_k)=p_k,k=1,2,...,若级数\sum_{k=1}^{+\infty}x_kp_k绝对收敛,则称级数\sum_{k=1}^{+\infty}x_kp_k的值为随机变量X的数学期望,记为E(X),即:

p_k可以理解为“加权平均”中x_k的权重,数学期望简称期望,又叫均值。

设连续型随机变量X的概率密度函数为f(x),若积分\int_{-\infty}^{+\infty}xf(x)dx绝对收敛(即\int_{-\infty}^{+\infty}|x|f(x)dx<+\infty),则称积分\int_{-\infty}^{+\infty}xf(x)dx的值为随机变量X的数学期望,即:

  • 例题

还可以得到:

1)二项分布B(n,p)的期望为np

2)参数为p的几何分布的期望为1/p

3)  均匀分布U(a,b)的期望为(a+b)/2

 

2. 随机变量函数的数学期望

  • 定理1

设Y是随机变量X的函数:Y=g(X),X是离散型随机变量,他的分布律为P(X=x_k)=p_k,k=1,2,...,若\sum_{k=1}^{\infty}g(x_k)p_k绝对收敛,则E(Y) = E(g(X)) = \sum_{k=1}^{\infty}g(x_k)p_k.

设Y为随机变量X的函数:Y=g(X),X是连续型随机变量,他的概率密度函数为f(x),若\int_{-\infty}^{+\infty}g(x)f(x)dx绝对收敛,则E(Y) = E(g(X)) =\int_{-\infty}^{+\infty}g(x)f(x)dx.

定理的重要意义在于我们求E(Y)时,不必求出Y的分布律或概率密度函数,而只要利用X的分布律或概率密度函数以及Y与X之间的关系就行了。

该定理也可以推广到两个或两个以上随机变量的函数的情况。

  • 定理2

设Z是随机变量X,Y的函数:Z=h(X,Y),若二元离散型随机变量(X,Y)的分布律为:P(X=x_i,Y=y_j) = p_{ij},i,j=1,2...,则E(Z) = E[h(X,Y)]=\sum_{i=1}^{+\infty}\sum_{j=1}^{+\infty}h(x_i,y_j)p_{ij}

设Z是随机变量X,Y的函数:Z=h(X,Y),若二元连续型随机变量(X,Y)的概率密度函数为f(x,y)则E(Z) = E[h(X,Y)]=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}h(x,y)f(x,y)dxdy.特别地,E(X) = \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}xf(x,y)dxdy,E(Y) = \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}yf(x,y)dxdy.

 

3. 数学期望的性质

  • 性质

1)设c是常数,则E(c) = c

2)  设X是一个随机变量,c是常数,则E(cX) = cE(X)

3)  设X,Y是两个随机变量,则E(X+Y)  = E(X) + E(Y),把(1)-(3)结合起来有E(aX+bY+c) = aE(X)+bE(Y)+c;可以推广到任意有限个随机变量线性组合的情况:

                                                  E(c_0 + \sum_{i=1}^{n}c_iX_i) = c_0 + \sum_{i=1}^{n}c_iE(X_i)

4)  设X,Y是相互独立的两个随机变量,则有:E(XY) = E(X)E(Y),可以推广到任意有限个相互独立的随机变量之积的情况:

                                                  E(\prod_{i=1}^{n}X_i) = \prod_{i=1}^{n}E(X_i)

其中X_i,i=1,2,...相互独立。

  • 证明

  • 例题

将X分解成数个随机变量之和,然后利用随机变量和的数学期望等于随机变量数学期望之和来求。

 

4. 方差定义和计算公式

随机变量X的均值/期望:E(X)

X对于均值的离差:X-E(X)

X对于均值的平均离差:E(X-E(X))

反应随机变量波动性可以用方差:E([X-E(X)]^2)

  • 定义

设X是一个随机变量,若E([X-E(X)]^2)存在,称其为X的方差,记作D(X)或Var(X),即:

                                        D(X)=Var(X)=E([X-E(X)]^2)

\sqrt{D(X)}记作\sigma(X),称为X的标准差或均方差。

D(X)和\sigma(X)刻画了X取值的波动性, 是衡量X取值分散程度的数字特征.若D(X)较小,则X取值比较集中;反之,若D(X)较大,则说明X取值比较分散。\sigma(X)是与随机变量X具有相同量纲的量。

注意到,当取g(x) = [x-E(X)]^2,则D(X)=E(g(X))

对于离散型随机变量X,其分布律为P(X=x_i) = p_i,i=1,2,...,则D(X) = \sum_{i=1}^{\infty}[x_i-E(X)]^2p_i.

对于连续型随机变量X,其概率密度函数为f(x),则D(X)=\int_{-\infty}^{+\infty}[x-E(X)]^2f(x)dx

利用数学期望的性质,可得方差的计算公式:D(X) = E(X^2)-E^2(X)

  • 例题

 

 

 

 

  • 12
    点赞
  • 81
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
概率论与数理统计思维导图可以帮助我们更好地理解和应用概率论与数理统计的知识。概率论与数理统计是一门研究随机现象和数据规律的学科,它广泛应用于各个领域,包括自然科学、社会科学、工程技术等。通过概率论与数理统计思维导图,我们可以清晰地把握概率论与数理统计的核心概念和基本原理。 在概率论方面,我们可以构建一个思维导图,包括概率的基本概念、概率的性质、条件概率、独立性、随机变量、概率分布等。思维导图可以帮助我们理解概率的含义,以及事件之间的关系和计算方法。 在数理统计方面,我们可以构建一个思维导图,包括统计变量、抽样分布、参数估计、假设检验、方差分析、回归分析、贝叶斯统计等。思维导图可以帮助我们理解统计推断的基本原理和方法,以及如何利用数据来进行统计推断。 思维导图还可以帮助我们将概率论与数理统计的知识与实际应用相结合,例如在生物统计学中,我们可以应用统计学方法来分析生物实验数据,判断实验结果的显著性;在金融风险管理中,我们可以利用概率论与数理统计的方法来评估金融市场的风险;在医学研究中,我们可以应用统计学方法来评估疾病的发病率和治疗效果等。 综上所述,概率论与数理统计思维导图可以帮助我们更好地理解和应用概率论与数理统计的知识,将其应用于实际问题的分析和解决,从而提高我们对概率与统计的认知和应用能力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值