最优传输-Sinkhorn算法(第九篇)

本文深入探讨Sinkhorn算法,它是解决熵正则化最优传输问题的有效方法。通过迭代更新变量u和v,算法最终满足质量守恒条件并收敛于最优解。Sinkhorn算法的复杂度与正则化系数相关,允许在合理次数的迭代后获得原始问题的近似解。了解这一算法对于理解最优传输在人工智能领域的应用至关重要。
摘要由CSDN通过智能技术生成

最优传输系列是基于Computational Optimal Transport开源书的读书笔记

Sinkhorn算法

上一篇里,我们介绍了加入熵正则化的最优传输问题–熵正则化通过限制最优传输问题解的复杂度,可以以大幅降低的复杂度得到最优传输问题的近似解。

不过,熵正则化仍然是一个概念,需要一个有效的算法,才能够释放它的潜力。
所以,在这一篇里,我们探索实际应用中十分常见的Sinkhorn算法。

得到Sinkhorn算法的第一步在于换一种方式表达正则化后的问题

正则化后的Kantorovich问题的解可以写为以下形式(4.12):
∀ ( i , j ) ∈ [ n ] × [ m ] , P i , j = u i K i , j v j \forall(i, j) \in[n] \times[m], \quad \mathbf{P}_{i, j}=\mathbf{u}_{i} \mathbf{K}_{i, j} \mathbf{v}_{j} (i,j)[n]×[m],Pi,j=uiKi,jvj

这里 K i , j = e − C i , j / ε \mathbf{K}_{i, j}=e^{-\mathbf{C}_{i, j} / \varepsilon} Ki,j=eCi,j/ε

  • 9
    点赞
  • 75
    收藏
    觉得还不错? 一键收藏
  • 8
    评论
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值