冰冰冰泠泠泠
码龄12年
关注
提问 私信
  • 博客:109,948
    109,948
    总访问量
  • 39
    原创
  • 54,617
    排名
  • 67
    粉丝
  • 0
    铁粉
  • 学习成就

个人简介:加油

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2013-03-02
博客简介:

icylling的专栏

查看详细资料
  • 原力等级
    成就
    当前等级
    3
    当前总分
    475
    当月
    6
个人成就
  • 获得122次点赞
  • 内容获得43次评论
  • 获得284次收藏
  • 代码片获得1,126次分享
创作历程
  • 4篇
    2024年
  • 17篇
    2023年
  • 8篇
    2022年
  • 1篇
    2021年
  • 2篇
    2020年
  • 7篇
    2019年
  • 1篇
    2018年
成就勋章
TA的专栏
  • 生成模型
    14篇
  • 多模态
    2篇
  • 刷题
  • Linux
    4篇
兴趣领域 设置
  • 人工智能
    pytorch
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

FLOW MATCHING FOR GENERATIVE MODELING 阅读笔记

Flow Matching (FM)是一种训练连续标准化流Continuous Normalizing Flow (CNF)的方法。
原创
发布博客 2024.08.05 ·
1190 阅读 ·
7 点赞 ·
0 评论 ·
7 收藏

DDPM和EulerScheduler

如果是用Euler算法求解DDPM,就是解上面的ODE,要注意做scale。部分保证是原始训练的量级,其他部分是non-scaled的。一般的perturbation kernel有下面的形式。EDM论文的C.3.1证明上面的公式等于论文中。对应,所以t变成了实数,不再是计数count。为non-scaled变量,即。
原创
发布博客 2024.01.30 ·
427 阅读 ·
5 点赞 ·
0 评论 ·
9 收藏

Offset Noise

如果尝试用stable diffusion生成特别暗或特别亮的图像,它几乎总是生成平均值相对接近 0.5 的图像。Offset Noise正是为了解决这个问题的一个trick。
原创
发布博客 2024.01.25 ·
1109 阅读 ·
5 点赞 ·
0 评论 ·
7 收藏

Denoising diffusion implicit models 阅读笔记2

Denoising diffusion probabilistic models (DDPMs)从马尔科夫链中采样生成样本,需要迭代多次,速度较慢。Denoising diffusion implicit models (DDIMs)的提出是为了在复用DDPM训练的网络的前提下,加速采样过程。加速采样的基本思路是,原本的生成过程是从T⋯1的序列逐步采样,加速时考虑从T⋯1的子序列采样,通过跳步的方式减少采样的步数。
原创
发布博客 2024.01.25 ·
995 阅读 ·
23 点赞 ·
0 评论 ·
20 收藏

Consistency Models 阅读笔记

Consistency models可以直接一步采样就生成图片,但是也允许进行多步采样来提高生成的质量。Consistency models可以从预训练的扩散模型蒸馏得到,也可以作为独立的生成模型从头训练得到。
原创
发布博客 2023.11.18 ·
804 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Stable Diffusion XL简介

SDXL是一个文生图模型。
原创
发布博客 2023.10.29 ·
1362 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

Elucidating the Design Space of Diffusion-Based Generative Models 阅读笔记

文章使用模块化(modular)的思想,分别从采样、训练、score network设计三个方面分析和改进diffusion-based models。
原创
发布博客 2023.10.16 ·
3806 阅读 ·
6 点赞 ·
0 评论 ·
9 收藏

Denoising diffusion implicit models 阅读笔记

Denoising diffusion probabilistic models (DDPMs)从马尔科夫链中采样生成样本,需要迭代多次,速度较慢。Denoising diffusion implicit models (DDIMs)的提出是为了加速采样过程,减少迭代的次数,并且要求DDIM可以复用DDPM训练的网络。
原创
发布博客 2023.09.21 ·
546 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Proximal Policy Optimization(PPO)和文本生成

在文本生成的情况下,给一个prompt,生成完整的response,是一个episode。动作空间是vocabulary。每生成一个词是一个时间步。
原创
发布博客 2023.08.10 ·
341 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Flamingo

基于已有的图像模型和文本模型构建多模态模型。输入是图像、视频和文本,输出是文本。
原创
发布博客 2023.08.08 ·
1277 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

BLIP2

BLIP2的任务是基于已有的固定参数的图像encoder和语言大模型(LLM)搭建一个具有图像理解能力的图文模型,输入是图像和文本,输出是文本。
原创
发布博客 2023.08.08 ·
1010 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

SCORE-BASED GENERATIVE MODELING THROUGH STOCHASTIC DIFFERENTIAL EQUATIONS 阅读笔记

建立一个连续时间索引的扩散过程xtt0T​t∈0T,其满足x0∼p0​是需要学习的目标数据分布,xT∼pT​是便于采样的先验分布。dxfxtdtgtdw5w是标准Wiener过程,f⋅t是称为drift coefficient的向量函数,gt是称为diffusion coefficient的标量函数。通过从xT∼pT​采样,并逆转上面的过程,我们可以得到x0∼p0​,从而得到目标数据分布的样本。d。
原创
发布博客 2023.08.07 ·
594 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

在conda环境中安装tensorflow和cuda

不同版本的tensorflow官方提供的编译好的whl文件只对应一个cuda版本,这让tensorflow的安装很麻烦。我选择的方式是在conda中新建一个环境,安装需要的tensorflow和cuda。
原创
发布博客 2023.06.15 ·
2954 阅读 ·
5 点赞 ·
1 评论 ·
21 收藏

Shap·E: Generating Conditional 3D Implicit Functions 阅读笔记

Shape·E是一个从图像或者文本生成3D模型的生成模型。Shape·E生成的是隐函数的参数。
原创
发布博客 2023.05.22 ·
646 阅读 ·
0 点赞 ·
2 评论 ·
2 收藏

阅读笔记 First Order Motion Model for Image Animation

文章解决的是图片动画的问题。假设有源图片和驱动视频,并且其中的物体是同一类的,文章的方法让源图片中的物体按照驱动视频中物体的动作而动。文章的方法只需要一个同类物体的视频集,不需要而外的标注。
原创
发布博客 2023.04.25 ·
1112 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

阅读笔记DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks

DeepAR是一个概率时间序列预测模型
原创
发布博客 2023.03.10 ·
746 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

import pytorch_lightning出现Segmentation fault (core dumped)

import lightning Segmentation fault (core dumped)
原创
发布博客 2023.03.01 ·
662 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

最优传输问题和Sinkhorn

最优传输问题加上熵正则化
原创
发布博客 2023.02.28 ·
2450 阅读 ·
2 点赞 ·
0 评论 ·
10 收藏

论文笔记NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

NeRF使用神经网络来表示场景。给定一个场景,输入该场景稀疏的视角图片,NeRF可以合成该场景新的视角的图片。
原创
发布博客 2023.02.16 ·
917 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Noise-contrastive estimation简介

Noise-contrastive estimation(NCE)是一种估计参数化统计模型参数的方法。基本思想是用非线性逻辑回归(nonlinear logistic regression)区分观测数据和一些人为产生的噪声数据。
原创
发布博客 2023.02.14 ·
709 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏
加载更多