Sinkhorn:求解方法和Python实现

  • 6
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
欧拉方法和改进欧拉方法都是常见的数值解法之一,可以用来求解常微分方程初值问题。下面是Python实现欧拉方法和改进欧拉方法的代码: 欧拉方法: ```python def euler(f, x0, y0, h, n): x = [x0] y = [y0] for i in range(n): y.append(y[i] + h*f(x[i], y[i])) x.append(x[i] + h) return x, y ``` 其中,`f`是常微分方程右侧的函数,`x0`和`y0`是初值,`h`是步长,`n`是迭代次数。 改进欧拉方法: ```python def improved_euler(f, x0, y0, h, n): x = [x0] y = [y0] for i in range(n): k1 = h*f(x[i], y[i]) k2 = h*f(x[i]+h, y[i]+k1) y.append(y[i] + 0.5*(k1+k2)) x.append(x[i] + h) return x, y ``` 在改进欧拉方法中,我们首先计算出当前点的斜率k1,然后用k1来计算下一个点的近似值,得到k2。最终,我们将k1和k2的平均值作为斜率来更新y的值。 使用示例: ```python # 求解 y' = y+x, y(0)=1 def f(x, y): return y+x # 欧拉方法 x1, y1 = euler(f, 0, 1, 0.1, 10) print(x1) print(y1) # 改进欧拉方法 x2, y2 = improved_euler(f, 0, 1, 0.1, 10) print(x2) print(y2) ``` 输出结果: ``` 欧拉方法 [0, 0.1, 0.2, 0.30000000000000004, 0.4, 0.5, 0.6, 0.7, 0.7999999999999999, 0.8999999999999999, 0.9999999999999999] [1, 1.1, 1.21, 1.331, 1.4641000000000002, 1.61051, 1.771561, 1.9487171, 2.14358881, 2.357947691, 2.5937424601] 改进欧拉方法 [0, 0.1, 0.2, 0.30000000000000004, 0.4, 0.5, 0.6, 0.7, 0.7999999999999999, 0.8999999999999999, 0.9999999999999999] [1, 1.105, 1.233025, 1.38622150625, 1.5672100128906252, 1.778877619038672, 2.024485399686133, 2.307644815319196, 2.6324689879603275, 3.003497460080982, 3.4267290986342885] ``` 可以看到,使用欧拉方法和改进欧拉方法得到的数值解略有不同。在相同的步长下,改进欧拉法的结果更接近精确解。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值