Description
给a个1,b个2,c个5,问它们不能组成的最小正整数是谁
Input
多组用例,每组用例占一行包括三个整数a,b,c,以0 0 0结束输入
Output
对于每组用例,输出给出的数不能组成的最小正整数
Sample Input
1 1 3
0 0 0
Sample Output
4
Solution1
任意一个大于等于 5 5 的正整数显然可以被表示成的形式,任何一个小于 5 5 的正整数显然也可以被表示成的形式,当 a=0 a = 0 时显然 1 1 不能被组成,当时,不管 c c 有多少都不能组成,否则所有小于等于 a+2b+5c a + 2 b + 5 c 的正整数都可以被表示,即此时不能表示的最小正整数是 a+2b+5c+1 a + 2 b + 5 c + 1
Code1
#include<cstdio>
#include<iostream>
using namespace std;
int main()
{
int a,b,c;
while(scanf("%d%d%d",&a,&b,&c)&&(a||b||c))
{
if(a==0)
printf("1\n");
else if(a+2*b<4)
printf("%d\n",a+2*b+1);
else
printf("%d\n",a+2*b+5*c+1);
}
return 0;
}
Solution2
三个数字的生成函数分别为 ∑i=0nxi,n=a,b,c ∑ i = 0 n x i , n = a , b , c ,计算这三个生成函数的乘积后找到系数为0的最低次项即可
Code2
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
const int INF=0x3f3f3f3f,maxn=10001;
int num[3],a[maxn],b[maxn],c[3]={1,2,5};
int main()
{
while(~scanf("%d%d%d",&num[0],&num[1],&num[2]),num[0]+num[1]+num[2])
{
int n=0;
memset(a,0,sizeof(a));
a[0]=1;
for(int i=0;i<3;i++)
{
for(int j=0;j<=n;j++)
for(int k=0;k<=num[i];k++)
b[j+c[i]*k]|=a[j];
n+=c[i]*num[i];
for(int j=0;j<=n;j++)a[j]=b[j],b[j]=0;
}
for(int i=1;i<=n+1;i++)
if(!a[i])
{
printf("%d\n",i);
break;
}
}
return 0;
}