HDU 1085 Holding Bin-Laden Captive!(数论+生成函数)

201 篇文章 10 订阅
20 篇文章 0 订阅

Description

给a个1,b个2,c个5,问它们不能组成的最小正整数是谁

Input

多组用例,每组用例占一行包括三个整数a,b,c,以0 0 0结束输入

Output

对于每组用例,输出给出的数不能组成的最小正整数

Sample Input

1 1 3
0 0 0

Sample Output

4

Solution1

任意一个大于等于 5 5 的正整数显然可以被表示成5x+y的形式,任何一个小于 5 5 的正整数显然也可以被表示成2x+y的形式,当 a=0 a = 0 时显然 1 1 不能被组成,当a+2b<4时,不管 c c 有多少都不能组成a+2b+1<5,否则所有小于等于 a+2b+5c a + 2 b + 5 c 的正整数都可以被表示,即此时不能表示的最小正整数是 a+2b+5c+1 a + 2 b + 5 c + 1

Code1

#include<cstdio>
#include<iostream>
using namespace std;
int main()
{
    int a,b,c;
    while(scanf("%d%d%d",&a,&b,&c)&&(a||b||c))
    {
        if(a==0)
            printf("1\n");
        else if(a+2*b<4)
            printf("%d\n",a+2*b+1);
        else
            printf("%d\n",a+2*b+5*c+1);
    }
    return 0;
}

Solution2

三个数字的生成函数分别为 i=0nxi,n=a,b,c ∑ i = 0 n x i , n = a , b , c ,计算这三个生成函数的乘积后找到系数为0的最低次项即可

Code2

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
const int INF=0x3f3f3f3f,maxn=10001;
int num[3],a[maxn],b[maxn],c[3]={1,2,5};
int main()
{
    while(~scanf("%d%d%d",&num[0],&num[1],&num[2]),num[0]+num[1]+num[2])
    {
        int n=0;
        memset(a,0,sizeof(a));
        a[0]=1;
        for(int i=0;i<3;i++)
        {
            for(int j=0;j<=n;j++)
                for(int k=0;k<=num[i];k++)
                    b[j+c[i]*k]|=a[j];
            n+=c[i]*num[i];
            for(int j=0;j<=n;j++)a[j]=b[j],b[j]=0;
        }
        for(int i=1;i<=n+1;i++)
            if(!a[i])
            {
                printf("%d\n",i);
                break;
            }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值