Description
G
为一个
Input
第一行一整数
T
表示用例组数,每组用例输入两个整数
Output
对于每组用例,输出答案,结果模 P
Sample Input
3
1 1000000007
2 1000000007
3 1000000007
Sample Output
Case #1: 1
Case #2: 3
Case #3: 16
Solution
令
令
h(d)
为
n
个点带标号无向图,每个连通块点数被
令
H(d)
为
n
个点带标号无向图,连通块点数的最大公约数为
Code
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long ll;
#define maxn 30005
#define maxfft 131072+5
int mod;
const double pi=acos(-1.0);
struct cp
{
double a,b;
cp operator +(const cp &o)const {return (cp){a+o.a,b+o.b};}
cp operator -(const cp &o)const {return (cp){a-o.a,b-o.b};}
cp operator *(const cp &o)const {return (cp){a*o.a-b*o.b,b*o.a+a*o.b};}
cp operator *(const double &o)const {return (cp){a*o,b*o};}
cp operator !() const{return (cp){a,-b};}
}w[maxfft];
int pos[maxfft];
void fft_init(int len)
{
int j=0;
while((1<<j)<len)j++;
j--;
for(int i=0;i<len;i++)
pos[i]=pos[i>>1]>>1|((i&1)<<j);
}
void fft(cp *x,int len,int sta)
{
for(int i=0;i<len;i++)
if(i<pos[i])swap(x[i],x[pos[i]]);
w[0]=(cp){1,0};
for(unsigned i=2;i<=len;i<<=1)
{
cp g=(cp){cos(2*pi/i),sin(2*pi/i)*sta};
for(int j=i>>1;j>=0;j-=2)w[j]=w[j>>1];
for(int j=1;j<i>>1;j+=2)w[j]=w[j-1]*g;
for(int j=0;j<len;j+=i)
{
cp *a=x+j,*b=a+(i>>1);
for(int l=0;l<i>>1;l++)
{
cp o=b[l]*w[l];
b[l]=a[l]-o;
a[l]=a[l]+o;
}
}
}
if(sta==-1)for(int i=0;i<len;i++)x[i].a/=len,x[i].b/=len;
}
cp x[maxfft],y[maxfft],z[maxfft];
int temp[maxfft];
void FFT(int *a,int *b,int n,int m,int *c)
{
if(n<=100&&m<=100||min(n,m)<=5)
{
for(int i=0;i<n+m-1;i++)temp[i]=0;
for(int i=0;i<n;i++)
for(int j=0;j<m;j++)
{
temp[i+j]+=(ll)a[i]*b[j]%mod;
if(temp[i+j]>=mod)temp[i+j]-=mod;
}
for(int i=0;i<n+m-1;i++)c[i]=temp[i];
return ;
}
int len=1;
while(len<n+m)len<<=1;
fft_init(len);
for(int i=0;i<len;i++)
{
int aa=i<n?a[i]:0,bb=i<m?b[i]:0;
x[i]=(cp){(aa>>15),(aa&32767)},y[i]=(cp){(bb>>15),(bb&32767)};
}
fft(x,len,1),fft(y,len,1);
for(int i=0;i<len;i++)
{
int j=len-1&len-i;
z[i]=((x[i]+!x[j])*(y[i]-!y[j])+(x[i]-!x[j])*(y[i]+!y[j]))*(cp){0,-0.25};
}
fft(z,len,-1);
for(int i=0;i<n+m-1;i++)
{
ll ta=(ll)(z[i].a+0.5)%mod;
ta=(ta<<15)%mod;
c[i]=ta;
}
for(int i=0;i<len;i++)
{
int j=len-1&len-i;
z[i]=(x[i]-!x[j])*(y[i]-!y[j])*(cp){-0.25,0}+(x[i]+!x[j])*(y[i]+!y[j])*(cp){0,0.25};
}
fft(z,len,-1);
for(int i=0;i<n+m-1;i++)
{
ll ta=(ll)(z[i].a+0.5)%mod,tb=(ll)(z[i].b+0.5)%mod;
ta=(ta+(tb<<30))%mod;
c[i]=(c[i]+ta)%mod;
}
}
int mod_pow(int a,ll b)
{
int ans=1;
while(b)
{
if(b&1)ans=(ll)ans*a%mod;
a=(ll)a*a%mod;
b>>=1;
}
return ans;
}
int T,n,a[maxn],b[maxfft],dp[maxn],fact[maxn],ifact[maxn],inv[maxn],phi[maxn];
void init(int n)
{
fact[0]=1;
for(int i=1;i<=n;i++)fact[i]=(ll)i*fact[i-1]%mod;
inv[1]=1;
for(int i=2;i<=n;i++)inv[i]=mod-(ll)(mod/i)*inv[mod%i]%mod;
ifact[0]=1;
for(int i=1;i<=n;i++)ifact[i]=(ll)inv[i]*ifact[i-1]%mod;
a[0]=0;
for(int i=1;i<=n;i++)a[i]=(ll)mod_pow(2,(ll)i*(i-1)/2)*ifact[i]%mod;
for(int i=1;i<=n;i++)phi[i]=i;
for(int i=2;i<=n;i++)
if(phi[i]==i)
for(int j=i;j<=n;j+=i)
phi[j]=phi[j]/i*(i-1);
}
void deal(int l,int r)
{
if(l==r)
{
dp[l]+=(ll)l*a[l]%mod;
if(dp[l]>=mod)dp[l]-=mod;
return ;
}
int mid=(l+r)>>1;
deal(l,mid);
FFT(dp+l,a+1,mid-l+1,r-l,b);
for(int i=mid+1;i<=r;i++)
{
dp[i]-=b[i-l-1];
if(dp[i]<0)dp[i]+=mod;
}
deal(mid+1,r);
}
int temp1[maxfft],temp2[maxfft],temp3[maxfft];
void Poly_Inv(int *poly,int n,int *ans)
{
ans[0]=1;
for(int i=2;i<=n;i<<=1)
{
FFT(poly,ans,i,i/2,temp1);
FFT(ans,temp1+i/2,i/2,i/2,temp1);
for(int j=0;j<i/2;j++)ans[j+i/2]=mod-temp1[j];
}
}
void Poly_Log(int *poly,int n,int *ans)
{
Poly_Inv(poly,n,temp2);
for(int i=0;i<n-1;i++)ans[i]=(ll)poly[i+1]*(i+1)%mod;
FFT(ans,temp2,n-1,n,ans);
for(int i=n-1;i>0;i--)ans[i]=(ll)ans[i-1]*inv[i]%mod;
ans[0]=0;
}
void Poly_Exp(int *poly,int n,int *ans)
{
if(n==1)
{
ans[0]=1;
return ;
}
Poly_Exp(poly,n/2,ans);
Poly_Log(ans,n,temp3);
for(int i=0;i<n;i++)
{
temp3[i]=poly[i]-temp3[i];
if(temp3[i]<0)temp3[i]+=mod;
}
temp3[0]++;
if(temp3[0]==mod)temp3[0]=0;
FFT(ans,temp3,n,n,ans);
for(int i=n;i<2*n;i++)ans[i]=0;
}
int f[maxfft],g[maxfft];
int Solve(int n,int d)
{
if(d==1)return mod_pow(2,(ll)n*(n-1)/2);
int m=n/d+1;
f[0]=0;
for(int i=1;i<m;i++)f[i]=(ll)dp[i*d]*ifact[i*d]%mod;
int len=1;
while(len<m)len<<=2;
for(int i=m;i<len;i++)f[i]=0;
Poly_Exp(f,len,g);
return (ll)g[n/d]*fact[n]%mod;
}
int main()
{
int Case=1;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&mod);
init(n);
memset(dp,0,sizeof(dp));
deal(1,n);
for(int i=1;i<=n;i++)dp[i]=(ll)fact[i-1]*dp[i]%mod;
int ans=0;
for(int i=1;i*i<=n;i++)
if(n%i==0)
{
ans+=(ll)Solve(n,i)*phi[i]%mod;
if(ans>=mod)ans-=mod;
if(i*i!=n)
{
ans+=(ll)Solve(n,n/i)*phi[n/i]%mod;
if(ans>=mod)ans-=mod;
}
}
printf("Case #%d: %d\n",Case++,ans);
}
return 0;
}