Description
给出n个数,先从中选取四个数,使得这四个数最大公因子为1,问有多少种选取方法
Input
多组输入,每组用例第一行为一整数n(n<=10000),第二行n个整数ai(ai<=10000)
Output
对于每种用例,输出满足条件的选取方案数
Sample Input
4
2 3 4 5
4
2 4 6 8
7
2 3 4 5 7 6 8
Sample Output
1
0
34
Solution
显然直接从这n个数中找四个最大公因子为1的数是不可能的,那么正难则反,首先从n个数中选取4个数的方案数是C(n,4),然后我们轻易知道只有这4个数具有至少一个共同因子时才不满足最大公因子为1的条件,设这n个数中以i为因子的数有num[i]个,那么从n个数中选取四个具有共同公因子的选取方案数sum就可以通过容斥定理得到,对于某个i,设cnt[i]为i的素因子数,那么当cnt[i]为奇,sum+=C(num[i],4),当cnt[i]为偶,sum-=C(num[i],4),最后令C(n,4)-sum即为答案
Code
#include<stdio.h>
#include<string.h>
#define maxn 10001
typedef long long ll;
int n,prime[20],num[maxn],cnt[maxn];
ll C[maxn];
void init()
{
C[0]=C[1]=C[2]=C[3]=0;
for(ll i=4;i<maxn;i++)
C[i]=i*(i-1)*(i-2)*(i-3)/24;
}
void deal(int x)
{
//素分解
int res=0;//记录x的素因子个数
for(int i=2;i*i<=x;i++)
if(x%i==0)
{
prime[res++]=i;
while(x%i==0)
x/=i;
}
if(x>1)prime[res++]=x;
for(int i=0;i<(1<<res);i++)//2^res枚举得到x的所有因子
{
int temp=0,sum=1;//sum记录该因子,temp记录该因子的素因子个数
for(int j=0;j<res;j++)
if(i&(1<<j))
temp++,sum*=prime[j];
num[sum]++;//以sum为因子的数个数加一
cnt[sum]=temp;//sum的素因子数为temp
}
}
int main()
{
init();//预处理出C(i,4)
while(~scanf("%d",&n))
{
memset(num,0,sizeof(num));
memset(cnt,0,sizeof(cnt));
int d;
for(int i=0;i<n;i++)
{
scanf("%d",&d);
deal(d);//对d素分解
}
ll ans=C[n];
for(int i=2;i<maxn;i++)//容斥
if(cnt[i]&1)ans-=C[num[i]];
else ans+=C[num[i]];
printf("%lld\n",ans);
}
return 0;
}