Description
Alice和Bob在一个n*20的棋盘上玩游戏,游戏规则如下:首先给出一个棋盘的初始状态,一些格子有棋子,一些没有,且每个格子至多放一枚棋子,Alice和Bob轮流移动棋子,每次可以将任一行上的一个棋子右移到该棋子右方第一个空格处,但不能将棋子移出棋盘,谁无法移动谁输,问Alice是否有必胜策略
Input
第一行一整数T表示用例组数,每组用例首先输入棋盘列数n,之后n行第i行输入一整数m表示第i行上棋子个数,之后m个整数表示这m个棋子的位置
(T<=100,n<=1000,m<=20)
Output
对于每组用例,如果Alice有必胜策略则输出YES,否则输出NO
Sample Input
2
1
2 19 20
2
1 19
1 18
Sample Output
NO
YES
Solution
组合博弈问题,由于每行只有20个格子,所以可以将每行的棋子状态压成一个int,对每个状态,找出其所有后继状态的sg值,那么此状态的sg值就是其后继状态sg中没有取到的最小自然数,初始化sg[0]=0,sg[1]=0,那么对于每组用例,只需要将n行的状态的sg值做异或,结果非0则输出YES,否则输出NO
Code
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
#define maxn 1111
int T,n;
int sg[1<<20],flag[22];
int dfs(int x)
{
if(sg[x]!=-1)return sg[x];
memset(flag,0,sizeof(flag));
for(int i=0;i<20;i++)
if(x&(1<<i))
{
int j=i;
while(j>=0&&(x&(1<<j)))j--;
if(j==-1)continue;
int temp=x^(1<<i)+(1<<j);
flag[sg[temp]]=1;
}
for(int i=0;;i++)if(!flag[i])return sg[x]=i;
}
int main()
{
memset(sg,-1,sizeof(sg));
sg[0]=0,sg[1]=0;
for(int i=2;i<(1<<20);i++)dfs(i);
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
int ans=0;
while(n--)
{
int m,p,temp=0;
scanf("%d",&m);
while(m--)
{
scanf("%d",&p);
temp+=(1<<(20-p));
}
ans^=sg[temp];
}
printf("%s\n",ans?"YES":"NO");
}
return 0;
}