【离散数学】关于商集的例题的解析【2】

我们首先分析 \( I_A \) 和 \( E_A \) 的商集。

### 1. **自反关系 \( I_A \) 的商集**:

自反关系 \( I_A \) 定义为每个元素都与自己相关,即对于集合 \( A = \{a_1, a_2, \dots, a_n\} \),有:
\[
I_A = \{\langle a_i, a_i \rangle \mid a_i \in A\}
\]
这个关系仅仅包含每个元素与自己相关,不涉及不同元素之间的关系。由于自反关系不对不同元素之间进行任何“连接”,因此每个元素都形成一个单独的等价类。

**商集 \( A / I_A \)** 由每个元素作为一个等价类构成:
\[
A / I_A = \{\{a_1\}, \{a_2\}, \dots, \{a_n\}\}
\]
因此,商集 \( A / I_A \) 中有 \( n \) 个等价类,每个等价类包含集合 \( A \) 中的一个元素。

### 2. **等价关系 \( E_A \) 的商集**:

假设 \( E_A \) 是集合 \( A \) 上的一个等价关系,且 \( E_A \) 满足自反性、对称性和传递性。通常情况下,等价关系会将集合 \( A \) 划分成若干个互不相交的等价类。由于题目中没有给出 \( E_A \) 的具体定义,我们只能假设 \( E_A \) 是 \( A \) 上的任意一个等价关系。为了讨论方便,我们可以推测,假设 \( E_A \) 是任意的等价关系,而非特定的某一个关系。

对于任意的等价关系 \( E_A \),商集 \( A / E_A \) 将集合 \( A \) 划分为若干个等价类,每个等价类包含那些相互等价的元素。具体来说,如果 \( E_A \) 将集合 \( A \) 分成 \( k \) 个等价类,那么商集 \( A / E_A \) 就包含这 \( k \) 个等价类。

### 总结:

- **\( A / I_A \)** 是由 \( n \) 个单元素集合组成的商集:
  \[
  A / I_A = \{\{a_1\}, \{a_2\}, \dots, \{a_n\}\}
  \]
- **\( A / R \)**(由等价关系 \( R_{ij} \) 定义的商集)是一个单一的等价类,即:
  \[
  A / R = \{\{a_1, a_2, \dots, a_n\}\}
  \]
- **\( A / E_A \)** 取决于 \( E_A \) 的具体形式,一般情况下是由若干个互不相交的等价类组成的商集。


根据你提供的信息,等价关系 \( R_{ij} \) 是集合 \( A = \{a_1, a_2, \dots, a_n\} \) 上的一种特殊的等价关系。这个等价关系包含了自反关系 \( I_A \) 和对于任意 \( i \neq j \) 的元素 \( a_i \) 和 \( a_j \) 的对称关系,即:

\[
R_{ij} = I_A \cup \{\langle a_i, a_j \rangle, \langle a_j, a_i \rangle\} \quad \text{(其中 \( i \neq j \))}
\]

### 1. **自反性**:
自反性表明每个元素 \( a_i \) 与自己相关,因此每个元素都与自己构成一对关系 \( \langle a_i, a_i \rangle \)。

### 2. **对称性**:
对于任意的 \( i \neq j \),如果 \( \langle a_i, a_j \rangle \in R_{ij} \),那么 \( \langle a_j, a_i \rangle \in R_{ij} \) 也成立,这意味着 \( a_i \) 和 \( a_j \) 互相关联。

### 3. **商集的构造**:
根据定义,\( R_{ij} \) 使得每对不同的元素 \( a_i \) 和 \( a_j \) 都互相关联,而自反关系保证了每个元素与自己相关。因此,对于任意 \( i \neq j \),元素 \( a_i \) 和 \( a_j \) 在 \( R_{ij} \) 下属于同一个等价类。

由于所有不同的元素都相互关联,整个集合 \( A \) 中的所有元素都会属于同一个等价类。

### 4. **商集**:
由于所有元素都属于同一个等价类,商集 \( A / R_{ij} \) 中只有一个元素,即包含集合 \( A \) 中所有元素的单一集合。因此:
\[
A / R_{ij} = \{\{a_1, a_2, \dots, a_n\}\}
\]

### 结论:
\( R_{ij} \) 的商集是一个包含所有元素的单一等价类,即:
\[
A / R_{ij} = \{\{a_1, a_2, \dots, a_n\}\}
\]
这意味着 \( R_{ij} \) 将集合 \( A \) 中的所有元素归为一个等价类。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值