计算机算法设计与分析
浪在冰城
原谅我一生放荡不羁爱自由 个人微信公众号:KeepYourAims
展开
-
【raptor】生成随机整数,求和
目标:随机生成两个整数(1-100),然后求和。raptor中有随机数函数。结果:分析:Random函数生成0-1(不包括1)的实数,则Random*100生成 0-100(不包括100)的实数。因此 Random*100+1 则生成 1-101(不包括101)的实数。要生成两个整数随机数,可以使用floor函数。步骤:(1)首先在raptor中依次插入 赋值框...原创 2020-02-22 18:52:54 · 9255 阅读 · 0 评论 -
raptor工具使用方法、两个数求和
【raptor软件界面】【符号】赋值、调用、输入、输出、选择、循环【例1】输入两个整数,然后求和目的:输入两个整数,然后求和最终结果:(1)输入两个整数拖动输入框,然后放入start和end框内(先保存文件)一共加入两个输入框。(2)双击输入框(3)在两个输入框中填写输入提示和输入变量输入提示要 双引号结果:(4)将x...原创 2020-02-22 17:58:36 · 9698 阅读 · 0 评论 -
难问题的部分分类
难问题的部分分类1 包装问题包装问题主要有独立集问题和集合包装问题。(1)独立集问题:给定图G和数k,问G包含大小至少为k的独立集吗?(2)集合包装问题:给定 nnn 个元素的集合 UUU , UUU 的子集 S1,S2,...,SmS_1,S_2,...,S_mS1,S2,...,Sm 以及数 kkk , 问在这些子集中至少含有 kkk 个集合两两不相交?2 覆盖问题覆盖问题主...原创 2020-02-18 15:41:59 · 218 阅读 · 0 评论 -
子集和问题是NP完全的
【子集和问题】给定自然数w1,w2,...,wnw_1,w_2,...,w_nw1,w2,...,wn和目标值W,问{w1,w2,...,wnw_1,w_2,...,w_nw1,w2,...,wn}有一个子集加起来恰好等于W吗?Ex: { 1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344 }, W = 3754.Yes. 1 +...原创 2020-02-18 15:40:22 · 1892 阅读 · 0 评论 -
子集和问题
【子集和问题】给定自然数w1,w2,...,wnw_1,w_2,...,w_nw1,w2,...,wn和目标值W,问{w1,w2,...,wnw_1,w_2,...,w_nw1,w2,...,wn}有一个子集加起来恰好等于W吗?Ex: { 1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344 }, W = 3754.Yes. 1 +...原创 2020-02-18 15:39:30 · 224 阅读 · 0 评论 -
三着色问题是NP完全的
【图着色问题】在图着色问题中,试图给图G中的每一个结点分配颜色,使得如果(u,v)是一条边,则边的两个结点的颜色不同。目标是使用很少的几种颜色做到这一点。使用的颜色数量为k。图着色问题可以阐述为:任意给图G和界限k,问G有k-着色吗?三着色问题是NP完全的有一个图G是二可着色的当且仅当它是二部图(这里不对齐进行证明)。对于3种颜色的情况,已经比较复杂了。三着色问题其实是一个NP完全问题。首先...原创 2020-02-18 15:38:33 · 4489 阅读 · 1 评论 -
图着色问题
【图着色问题】在图着色问题中,试图给图G中的每一个结点分配颜色,使得如果(u,v)是一条边,则边的两个结点的颜色不同。目标是使用很少的几种颜色做到这一点。使用的颜色数量为k。图着色问题可以阐述为:任意给图G和界限k,问G有k-着色吗?,.♥,.,.♥,.,.♥,.♥,.,.♥,.,.♥,.,.♥,.,.♥,.,.♥,.,.♥,.,.♥♥,.,.♥,.,.♥,.,.♥,.♥,.,.♥,.,.♥,...原创 2020-02-18 15:37:17 · 395 阅读 · 0 评论 -
三维匹配问题是NP完全的
【三维匹配问题】给定三个不相交的集合X、Y、Z,三个集合的大小都为n。给定一个三元组集合T⊆X×Y×ZT \subseteq X \times Y \times ZT⊆X×Y×Z,集合T的大小为m。问:T中是否存在一个大小为n的子集T’,这个子集恰好包含X,Y,Z每个元素一次。三维匹配问题其实是集合覆盖和集合包装问题的特例。三维匹配问题是NP完全的首先,很容易证明三维匹配问题是NP问题。...原创 2020-02-18 15:36:02 · 2315 阅读 · 0 评论 -
三维匹配问题
【三维匹配问题】给定三个不相交的集合X、Y、Z,三个集合的大小都为n。给定一个三元组集合T⊆X×Y×ZT \subseteq X \times Y \times ZT⊆X×Y×Z,集合T的大小为m。问:T中是否存在一个大小为n的子集T’,这个子集恰好包含X,Y,Z每个元素一次。三维匹配问题其实是集合覆盖和集合包装问题的特例。,.♥,.,.♥,.,.♥,.♥,.,.♥,.,.♥,.,.♥,....原创 2020-02-18 15:34:32 · 2673 阅读 · 0 评论 -
哈密顿路径问题+哈密顿路径问题是NP完全的
哈密顿路径问题【哈密顿路径问题】哈密顿路径问题是哈密顿圈问题的变种。如果有向图G中的路径P恰好包含每一个顶点一次,则称为是一条哈密顿路径。哈密顿路径问题是NP完全的证明哈密顿路径是NP完全,可以通过3-SAT归约到哈密顿路径。这与3-SAT归约到哈密顿问题是很相似的(只是没有t到s的边)。3-SAT归约到哈密顿问题:https://blog.csdn.net/Valieli/articl...原创 2020-02-18 15:32:05 · 4261 阅读 · 0 评论 -
哈密顿圈问题是NP完全的
【哈密顿圈问题】对于一个有向图G=(V,E),如果G中的圈C恰好经过每一个顶点一次,则称圈C是一个哈密顿圈。即,哈密顿圈构成一条经过所有的顶点,没有重复的“路线”。如图6是一个含有哈密顿圈的图。图6 一个含有哈密顿圈的有向图证明哈密顿圈问题是NPC的,可以通过证明3-SAT≤p\leq_p≤p哈密顿圈来得到。【3-SAT≤p\leq_p≤p哈密顿圈】构造方法如下:(1)对于每一个...原创 2020-02-17 16:54:12 · 6954 阅读 · 0 评论 -
哈密顿圈问题
【哈密顿圈问题】对于一个有向图G=(V,E),如果G中的圈C恰好经过每一个顶点一次,则称圈C是一个哈密顿圈。即,哈密顿圈构成一条经过所有的顶点,没有重复的“路线”。如图6是一个含有哈密顿圈的图。图6 一个含有哈密顿圈的有向图,.♥,.,.♥,.,.♥,.♥,.,.♥,.,.♥,.,.♥,.,.♥,.,.♥,.,.♥,.,.♥♥,.,.♥,.,.♥,.,.♥,.♥,.,.♥,.,.♥,.,....原创 2020-02-17 16:49:31 · 2544 阅读 · 1 评论 -
巡回售货员问题是NP完全的
巡回售货员问题【巡回售货员问题】有一位巡回售货员,他必须访问n个城市,分别记作v1,v2,v3,...,vnv_1,v_2,v_3,...,v_nv1,v2,v3,...,vn,售货员从他所居住的城市v1v_1v1出发,想找一条旅行路径,访问所有的其他城市最后回到家的顺序。目标是整个旅行路径的距离尽可能的小。对于每一对城市(vi,vjv_i,v_jvi,vj),城市的距离为d(...原创 2020-02-17 16:48:10 · 1582 阅读 · 0 评论 -
巡回售货员问题
巡回售货员问题【巡回售货员问题】有一位巡回售货员,他必须访问n个城市,分别记作v1,v2,v3,...,vnv_1,v_2,v_3,...,v_nv1,v2,v3,...,vn,售货员从他所居住的城市v1v_1v1出发,想找一条旅行路径,访问所有的其他城市最后回到家的顺序。目标是整个旅行路径的距离尽可能的小。对于每一对城市(vi,vjv_i,v_jvi,vj),城市的距离为d(...原创 2020-02-17 16:45:38 · 1478 阅读 · 0 评论 -
证明NPC问题的通用策略
证明NPC问题的通用策略给定一个基本的问题X,证明其是NPC的基本策略是:(1)证明X是一个NP问题。(2)选择一个已知的NPC问题Y。(3)证明Y≤pXY \leq_p XY≤pX。...原创 2020-02-17 16:44:49 · 611 阅读 · 0 评论 -
三元可满足性问题是NPC问题
三元可满足性问题是NPC问题定理7.如果 YYY 是一个 NPNPNP 完全问题, XXX 属于 NPNPNP ,且 Y≤pXY \leq_p XY≤pX,则 XXX 是 NPNPNP 完全的。之前已经证明3-SAT是一个NP问题,可以通过证明电路可满足性 ≤P\leq_P≤P 3-SAT,来证明它是NP完全的。【电路可满足性 ≤P\leq_P≤P 3-SAT】对于一个电路K,对于电...原创 2020-02-17 16:43:44 · 755 阅读 · 0 评论 -
电路可满足性问题是NPC问题
电路可满足性问题是NPC问题【电路可满足性问题】电路可满足性问题(Circuit satisfiability problem)描述为:给定一个电路,需要确定是否存在对输入的赋值使得输出值为1。如果存在这样的赋值,则称这个电路是可满足的。这个赋值也被称为一个满足的赋值。如图5为电路可满足性问题的一个实例。图5 电路可满足性问题图中的左边,从上到下依次是或门、非门。图中的右边是与门。当1和...原创 2020-02-17 16:42:41 · 964 阅读 · 1 评论 -
电路可满足性问题
【电路可满足性问题】电路可满足性问题(Circuit satisfiability problem)描述为:给定一个电路,需要确定是否存在对输入的赋值使得输出值为1。如果存在这样的赋值,则称这个电路是可满足的。这个赋值也被称为一个满足的赋值。如图5为电路可满足性问题的一个实例。图5 电路可满足性问题图中的左边,从上到下依次是或门、非门。图中的右边是与门。当1和2输入都为1,3输入为0的时候...原创 2020-02-17 16:40:36 · 870 阅读 · 0 评论 -
P问题与NP问题的关系
P问题与NP问题的关系定理5.P⊆NPP \subseteq NPP⊆NP.即,所有的P问题都是NP问题。当一个问题是P问题时,我们可以在多项式时间内求出问题的解。若要验证一个解(记为t1)是否正确时,只需使用多项式时间求解出这个问题的解(记为t2),然后将t1和t2做比较即可验证答案是否正确。即,可以利用多项式时间验证答案正确与否。因此,P问题也是NP问题。可以看到,三元可满足性问题(3-S...原创 2020-02-17 16:39:06 · 602 阅读 · 0 评论 -
归约的传递性
归约的传递性归约之间存在传递性。定理4.如果 X≤pY,Y≤pZ,X \leq_p Y, Y \leq_p Z,X≤pY,Y≤pZ,,则 X≤pZX \leq_p ZX≤pZ。通过上述归约,可以得到:3-SAT ≤p\leq_p≤p 独立集 ≤p\leq_p≤p 顶点覆盖 ≤p\leq_p≤p 集合覆盖,.♥,.,.♥,.,.♥,.♥,.,.♥,.,.♥,.,.♥,.,.♥,...原创 2020-02-17 16:37:06 · 962 阅读 · 0 评论 -
3-SAT归约到独立集问题
3-SAT归约到独立集问题【3-SAT ≤p\leq_p≤p 独立集】要证明3-SAT问题可以归约到独立集,就需要证明,有一个关于独立集的黑盒子,通过解3-SAT实例,能够解3-SAT问题。图4为从3-SAT到独立集归约的一个实例。图4 从3-SAT到独立集的归约对于一个子句来说,只要有一项的值为真,则整个子句的值为真。则,根据子句可以这样构造图:对于每一个子句,创建三个点,将三个...原创 2020-02-17 16:34:50 · 1603 阅读 · 0 评论 -
SAT和3-SAT
【SAT问题】将布尔可满足性问题(Boolean satisfiability problem)叫做SAT:给定变量集 X=X=X={x1,x2,...,xn{x_1,x_2,...,x_n}x1,x2,...,xn} 上的一组子句 C1,C2,...,CnC_1,C_2,...,C_nC1,C2,...,Cn ,问存在满足的真值赋值吗?例如,设有3个子句:(x1∨x2‾),(x...原创 2020-02-17 16:33:13 · 3026 阅读 · 0 评论 -
集合覆盖问题
【集合覆盖问题】集合覆盖问题可以描述为:给定 n 个元素的集合U,U 的子集S1,…,SmS_1,…,S_mS1,…,Sm 以及数 k, 问在这些子集中有一组子集,它的并等于整个 U 且至多含有 k 个子集?如图3为一个集合覆盖问题的实例。图3 集合覆盖问题实例在图3中,有3个子集(即数k为3){S3,S4,S5S_3,S_4,S_5S3,S4,S5},它的并等于整个 U。...原创 2020-02-16 19:41:31 · 4463 阅读 · 1 评论 -
顶点覆盖问题
【顶点覆盖问题】图的顶点覆盖也是一个点的集合。图中每一条边都至少有一个顶点在点集合中。如图2,黑色的点集合都是顶点覆盖集合,图的每一条边都至少有一个顶点在点集合中。图2 顶点覆盖集(黑色)♥,.,.♥,.,.♥,.♥,.,.♥,.,.♥,.,.♥,.,.♥,.,.♥,.,.♥,.,.♥♥,.,.♥,.,.♥,.,.♥,.♥,.,.♥,.,.♥,.,.♥,.,.♥,.,.♥,.,.♥,.*,...原创 2020-02-16 19:39:41 · 4300 阅读 · 0 评论 -
独立集问题
【独立集问题(Independent set)】一个独立集(也称为稳定集)是一个图中一些两两不相邻的顶点所形成的集合。即顶点集合的任意两个点之间没有边。如图1,红色的点集合都是独立集,任意两个红色的顶点没有边。图1 独立集(红色)♥,.,.♥,.,.♥,.♥,.,.♥,.,.♥,.,.♥,.,.♥,.,.♥,.,.♥,.,.♥♥,.,.♥,.,.♥,.,.♥,.♥,.,.♥,.,.♥,.,...原创 2020-02-16 19:38:51 · 2560 阅读 · 0 评论 -
顶点覆盖到集合覆盖的归约
顶点覆盖到集合覆盖的归约对于顶点覆盖问题,可以看做是“覆盖问题”,目标是用尽可能少的顶点“覆盖”图中所有的边。【集合覆盖问题】集合覆盖问题可以描述为:给定 n 个元素的集合U,U 的子集S1,…,SmS_1,…,S_mS1,…,Sm 以及数 k, 问在这些子集中有一组子集,它的并等于整个 U 且至多含有 k 个子集?如图3为一个集合覆盖问题的实例。图3 集合覆盖问题实例在图3中...原创 2020-02-16 19:37:25 · 2140 阅读 · 0 评论 -
独立集和顶点覆盖之间的归约
独立集与顶点覆盖之间的归约【独立集问题(Independent set)】一个独立集(也称为稳定集)是一个图中一些两两不相邻的顶点所形成的集合。即顶点集合的任意两个点之间没有边。如图1,红色的点集合都是独立集,任意两个红色的顶点没有边。图1 独立集(红色)【顶点覆盖问题】图的顶点覆盖也是一个点的集合。图中每一条边都至少有一个顶点在点集合中。如图2,黑色的点集合都是顶点覆盖集合,图的每一...原创 2020-02-16 19:34:11 · 669 阅读 · 0 评论 -
数值问题:子集和问题
文章目录7 数值问题7.1 子集和问题7.2 子集和问题是NP完全的所有内容:NP与计算的难解性7 数值问题7.1 子集和问题【子集和问题】给定自然数w1,w2,...,wnw_1,w_2,...,w_nw1,w2,...,wn和目标值W,问{w1,w2,...,wnw_1,w_2,...,w_nw1,w2,...,wn}有一个子集加起来恰好等于W吗?Ex: { 1, 4...原创 2020-02-16 19:30:35 · 317 阅读 · 0 评论 -
划分问题:三维匹配问题、图着色问题
文章目录6 划分问题6.1 三维匹配问题6.2 三维匹配问题是NP完全的6.3 图着色问题6.4 三着色问题是NP完全的所有内容:NP与计算的难解性6 划分问题讨论两个划分问题,一个是三维匹配问题,另一个是图着色问题。对于三维匹配问题,要求搜索把对象集合分成子集的方式。对于图着色问题,要求划分图中的结点。6.1 三维匹配问题【三维匹配问题】给定三个不相交的集合X、Y、Z,三个集合的大小...原创 2020-02-16 19:28:54 · 1444 阅读 · 0 评论 -
排序问题:巡回售货员问题、哈密顿圈问题
文章目录5 排序问题5.1 巡回售货员问题5.2 哈密顿圈问题5.3 哈密顿圈问题是NP完全的5.4 巡回售货员问题是NP完全的5.5 哈密顿路径问题5.6 哈密顿路径问题是NP完全的所有内容:NP与计算的难解性5 排序问题主要介绍哈密顿圈、巡回售货员问题这两个排序问题。5.1 巡回售货员问题【巡回售货员问题】有一位巡回售货员,他必须访问n个城市,分别记作v1,v2,v3,...,vn...原创 2020-02-16 19:26:45 · 630 阅读 · 0 评论 -
NP与计算的难解性
本文同个人微信公众号(KeepYourAims)文章:NP与计算的难解性文章目录1 多项式时间归约1.1 归约的概念1.2 多项式时间归约1.3 独立集与顶点覆盖之间的归约1.4 顶点覆盖到集合覆盖的归约1.5 独立集到集合包装的归约2 可满足性问题2.1 SAT和3-SAT2.2 3-SAT归约到独立集问题2.3 归约的传递性3 P、NP问题3.1 P(polynomial time)问题3....原创 2020-02-16 19:04:25 · 548 阅读 · 0 评论 -
多项式时间归约
文章目录1 多项式时间归约1.1 归约的概念1.2 多项式时间归约1.3 独立集与顶点覆盖之间的归约1.4 顶点覆盖到集合覆盖的归约1.5 独立集到集合包装的归约1 多项式时间归约1.1 归约的概念在研究不同问题的难度时,希望表达“问题X至少像问题Y一样的难”,这就是归约。1.2 多项式时间归约在计算模型中,假设问题X可以在多项式时间内求解。如果有一个解决问题X的“黑盒子”,假设通过多项...原创 2020-02-16 19:15:47 · 731 阅读 · 0 评论 -
可满足性问题 SAT、3SAT
文章目录2 可满足性问题2.1 SAT和3-SAT2.2 3-SAT归约到独立集问题2.3 归约的传递性所有内容:NP与计算的难解性2 可满足性问题2.1 SAT和3-SAT【SAT问题】将布尔可满足性问题(Boolean satisfiability problem)叫做SAT:给定变量集 X=X=X={x1,x2,...,xn{x_1,x_2,...,x_n}x1,x2,......原创 2020-02-16 19:20:20 · 3462 阅读 · 0 评论 -
P、NP、NPC问题
文章目录3 P、NP问题3.1 P(polynomial time)问题3.2 NP(nondeterministic polynomial time)问题3.3 P问题与NP问题的关系4 NPC问题(NP完全问题)4.1 NPC(NP-Complete)问题4.2 电路可满足性问题是NPC问题4.3 三元可满足性问题是NPC问题4.4 证明NPC问题的通用策略所有内容:NP与计算的难解性3 ...原创 2020-02-16 19:22:40 · 280 阅读 · 0 评论 -
多项式时间归约+独立集与顶点覆盖之间的归约
♥,.*,.♥,.*,.♥,.*,.♥,.*♥,.*,.♥,.*,.♥,.*,.♥,.*,.♥,.*,.♥,.*,.♥,.*,.♥♥,.*,.♥,.*,.♥,.*,.♥,.*♥,.*,.♥,.*,.♥,.*,.♥,.*,.♥,.*,.♥,.*,.♥,.*,.♥Table of Contents1.定义2.独立集与顶点覆盖之间的归约2.1 独立集问题(Independent set)...原创 2020-01-13 19:42:23 · 2810 阅读 · 0 评论 -
统计数字问题
题目:代码:#include #include #include using namespace std;int num;int a[10]={0};int f(){ for(int i=1;i<=num;i++) { int t=i; while(t) { a[t%10]++;原创 2017-09-20 10:39:36 · 869 阅读 · 0 评论