科学计数法是科学家用来表示很大或很小的数字的一种方便的方法,其满足正则表达式 [ + − ] [ 1 − 9 ] . [ 0 − 9 ] + E [ + − ] [ 0 − 9 ] + [+ -][1-9].[0-9]+E[+ -][0-9]+ [+−][1−9].[0−9]+E[+−][0−9]+,即数字的整数部分只有 1 位,小数部分至少有 1 位,该数字及其指数部分的正负号即使对正数也必定明确给出。
现以科学计数法的格式给出实数 A,请编写程序按普通数字表示法输出 A,并保证所有有效位都被保留。
输入格式:
每个输入包含 1 个测试用例,即一个以科学计数法表示的实数 A。该数字的存储长度不超过 9999 字节,且其指数的绝对值不超过 9999。
输出格式:
对每个测试用例,在一行中按普通数字表示法输出 A,并保证所有有效位都被保留,包括末尾的 0。
输入样例 1:
+1.23400E-03
输出样例 1:
0.00123400
输入样例 2:
-1.2E+10
输出样例 2:
-12000000000
#include <iostream>
#include <cstring>
#include <sstream>
using namespace std;
int main() {
char num[10000];
char exp[5]; // 记录指数大小
int val; // 字符串转换时使用的临时变量
memset(num, '\0', sizeof(num));
memset(exp, '\0', sizeof(exp));
cin >> num;
int bound = 3; // 记录‘E’的位置,作为边界
for (; num[bound] != 'E'; bound++);
for (int i = 0, j = bound + 2; num[j] != '\0'; i++, j++)
exp[i] = num[j];
stringstream s;
s << exp;
s >> val;
if (num[0] == '-')
cout << "-";
if (val == 0) { //注意指数为 0 的情况
cout << num[1] << ".";
for (int i = 3; i < bound; i++)
cout << num[i];
cout << endl;
return 0;
}
if (num[bound + 1] == '+') {
cout << num[1];
int i = 3;
val += 3;
for (; i < val && i < bound; i++)
cout << num[i];
if(i<bound) { // 注意此处应先判断是否到达边界
cout << ".";
for (; i < bound; i++)
cout << num[i];
}
else { // 其次判断指数
for (; i < val; i++)
cout << "0";
}
cout << endl;
}
else if (num[bound + 1] == '-') {
cout << "0.";
for (int i = 1; i < val; i++)
cout << "0";
cout << num[1];
for (int i = 3; i < bound; i++)
cout << num[i];
cout << endl;
}
}