- 博客(36)
- 收藏
- 关注
原创 直方图与密度图的绘制
基于Matplotlib与Seaborn载入样例数据进行可视化,并具体讲解了hist() 和 kdeplot() 两个函数的具体用法
2023-08-24 10:56:22 2007
原创 脑PET图像分析和疾病预测挑战赛---CNN进阶版
本次基于CNN---Baseline分别从数据增强、迁移学习、优化器、集成学习四个方向进行优化,结果相比之下提高了0.04,并进行了可解释性分析。
2023-08-23 09:15:22 302 2
原创 Python绘图简要---基于ProPlot与SciencePlots
基于ProPlot与SciencePlots,使用Python进行IEEE、Science等科学期刊的绘图
2023-08-22 09:53:45 470
原创 Python绘图简要---基于Seaborn
基于Python的第三方库Seaborn讲解了从安装到绘图类型的简要知识,并实现了关系绘图、分类绘图、分布绘图以及FacetGrid绘图
2023-08-20 17:33:34 244
原创 脑PET图像分析和疾病预测挑战赛---CNN
本次使用卷积神经网络(CNN)进行医学图像预测,其能够自动学习和提取图像中的特征,相比于基于sklearn的逻辑回归统计算法,最终F1-score提高了0.4
2023-08-20 09:46:21 159
原创 Matplotlib绘图简要
本次以python的第三方库Matplotlib出发,动手实践初步完成了对数据进行可视化,分别使用了线图,柱形图,散点图与等高线图
2023-08-18 10:35:35 89
原创 脑PET图像分析和疾病预测挑战赛---逻辑回归
初步利用sklearn库的逻辑回归简单实现了Baseline方案,接下来将尝试基于Pytorch框架搭建CNN网络,实现特征的自动提取,最后对二者进行可解释性分析。
2023-08-16 15:53:07 156
原创 Tensor中dim与Numpy中axis的比较
通过调研,发现python中import Numpy后在Numpy array计算中axis指令与pytorch框架下import torch / torch.nn后Tensor计算中dim指令难以区分,本文对此进行了对比分析,并给出了结论。
2023-01-03 21:38:24 441
原创 LIME:算法讲解
本文从LIME的底层逻辑出发,通过数学基础推导其算法原理和实现过程,并以流程图的形式讲解其伪代码,最后给出优缺点分析。该算法可以用在文本类与图像类的模型中,以分析模型提取到的特征是否符合可解释性。
2022-12-23 18:30:38 2477
原创 模拟调制—DSB信号及生物电信号特性测量分析实验报告
1、掌握 DSB 调制的原理及其调制信号的产生方法;2、掌握 DSB 信号特性分析方法; 3、掌握 DSB 信号的时频域特性以及数字统计特征。4、分析生物电信号数字统计特征。
2022-12-22 16:42:57 2389
原创 以GradCAM为例的衍生算法分析
文章以GradCAM为例,从网络结构出发,结合具体样例进行了优缺点分析,同时基于其缺点引出GradCAM++,ScoreCAM,LayerCAM衍生算法,从应用方面讨论了各自的优势。
2022-12-19 19:28:03 313
原创 Class Activation Mapping(CAM)
文章以CVPR 2016的CAM算法为例,重点讲解了网络模型架构及可视化的可解释性分析,从基础推导层面分析了池化层的作用,GAP与FC的异同以及以GradCAM为例的衍生算法分析,并提出了更进一步的思考
2022-12-16 20:34:58 531
原创 ZFNet
以ZFNet网络架构为重点,讲解了文章中提出的可视化技巧及由其衍生的综合性分析和可解释性分析,使得机器学习中图像特征的提取过程更加清晰。
2022-12-15 00:32:55 121
原创 可解释性机器学习--导论
文章以AI前沿技术为基础,通过传统机器学习和现代神经网络对比,从底层逻辑出发讲解了可解释性机器学习的重要性与必要性,同时引出了自己的思考。
2022-12-13 18:02:54 531
原创 基于神经网络的CTR实践
在基于2022华为全球校园AI算法---源域跨域CTR预估赛题LogisticRegression模型实践的基础上,利用神经网络模型成功实现了性能优化,并完成了各个方面的绩效点评
2022-08-20 22:04:46 574
原创 基于LogisticRegression的CTR实践
基于LogisticRegression模型,对2022华为全球校园AI算法—源域跨域CTR预估赛题进行量化分析与总结讨论
2022-08-15 20:16:25 2539
原创 PyTorch之CV
基于深度学习中的图像处理,本文主要讲解了torchvison下常用的部分函数,并对各个函数进行了说明,同时以当下常用的神经网络模型为例,进行了在ImageNet-1k数据集预训练下各个模型的准确率对比分析。...
2022-07-23 09:11:10 398
原创 PyTorch之训练技巧
从PyTorch训练技巧出发,讲解了自定义损失函数,动态调整学习率,模型微调与半精度训练总共四大部分,提供了一些简略的个人见解与相关Tips
2022-07-18 11:34:03 313
原创 PyTorch之模型定义
本次内容从模型定义出发,讲解了三种定义模型的方式并分析其各自优缺点,此外,以U-Net为例搭建复杂网络,在文章的最后,提供了模型修改、保存与读取的相关Tips
2022-07-17 22:29:46 482
原创 Notes for SVM
SVM:支持向量机 本次分享注重于基础算法及其推导过程。重点介绍了推导min |W|的过程与部分条件的证明,推导太艰难。。。
2022-06-02 17:39:39 74
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人