《动手学深度学习(PyTorch)》之数据操作

前言

        为了能够完成各种数据操作,我们需要某种方法来存储和操作数据。 通常,我们需要做两件重要的事:(1)获取数据;(2)将数据读入计算机后对其进行处理。 如果没有某种方法来存储数据,那么获取数据是没有意义的。

        首先,我们介绍n维数组,也称为张量(tensor)。 使用过Python中NumPy计算包的读者会对本部分很熟悉。 无论使用哪个深度学习框架,它的张量类(在PyTorch中为​​​​Tensor​​​​)都与Numpy的​​​​ndarray​​​​类似。 但深度学习框架又比Numpy的​​​​ndarray​​​​多一些重要功能: 首先,GPU能够很好地支持加速计算,而NumPy仅支持CPU计算; 其次,张量类支持自动微分。这些功能使得张量类更适合深度学习。 如果没有特殊说明,本书中所说的张量均指的是张量类的实例。

入门

        首先,我们导入​​​​torch​​​​。请注意,虽然它被称为PyTorch,但是代码中使用​​​​torch​​​​而不是​​​​pytorch​​​​,是不是很奇妙:)

import torch

        张量表示一个由数值组成的数组,这个数组可能有多个维度。 具有一个轴的张量对应数学上的向量(vector); 具有两个轴的张量对应数学上的矩阵(matrix); 具有两个轴以上的张量没有特殊的数学名称。

        首先,我们可以使用 ​​​​arange​​​​ 创建一个行向量 ​​​​x​​​​。这个行向量包含以0开始的前12个整数,它们默认创建为整数。也可指定创建类型为浮点数。张量中的每个值都称为张量的 元素(element)。例如,张量 ​​​​x​​​​ 中有 12个元素。除非额外指定,新的张量将存储在内存中,并采用基于CPU的计算。

x = torch.arange(12)
x

运行结果:

tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])

可以通过张量的shape属性来访问张量形状。

x.shape

运行结果: 

torch.Size([12])

        要想改变一个张量的形状而不改变元素数量和元素值,可以调用​​​​reshape​​​​函数。 例如,可以把张量​​​​x​​​​从形状为(12,)的行向量转换为形状为(3,4)的矩阵。 这个新的张量包含与转换前相同的值,但是它被看成一个3行4列的矩阵。 要重点说明一下,虽然张量的形状发生了改变,但其元素值并没有变。 注意,通过改变张量的形状,张量的大小不会改变。

X = x.reshape(3, 4)
X

运行结果:

tensor([[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]])

        我们不需要通过手动指定每个维度来改变形状。 也就是说,如果我们的目标形状是(高度,宽度), 那么在知道宽度后,高度会被自动计算得出,不必我们自己做除法。 在上面的例子中,为了获得一个3行的矩阵,我们手动指定了它有3行和4列。 幸运的是,我们可以通过​​​​-1​​​​来调用此自动计算出维度的功能。 即我们可以用​​​​x.reshape(-1,4)​​​​或​​​​x.reshape(3,-1)​​​​来取代​​​​x.reshape(3,4)​​​​。

运算符

        我们的兴趣不仅限于读取数据和写入数据。 我们想在这些数据上执行数学运算,其中最简单且最有用的操作是按元素运算。 它们将标准标量运算符应用于数组的每个元素。 对于将两个数组作为输入的函数,按元素运算将二元运算符应用于两个数组中的每对位置对应的元素。 我们可以基于任何从标量到标量的函数来创建按元素函数。

        对于任意具有相同形状的张量, 常见的标准算术运算符(​​​​+​​​​、​​​​-​​​​、​​​​*​​​​、​​​​/​​​​和​​​​**​​​​)都可以被升级为按元素运算。 我们可以在同一形状的任意两个张量上调用按元素操作。 在下面的例子中,我们使用逗号来表示一个具有5个元素的元组,其中每个元素都是按元素操作的结果。

x = torch.tensor([1.0, 2, 4, 8])
y = torch.tensor([2, 2, 2, 2])
x + y, x - y, x * y, x / y, x ** y  # **运算符是求幂运算

运行结果: 

(tensor([ 3.,  4.,  6., 10.]),
 tensor([-1.,  0.,  2.,  6.]),
 tensor([ 2.,  4.,  8., 16.]),
 tensor([0.5000, 1.0000, 2.0000, 4.0000]),
 tensor([ 1.,  4., 16., 64.]))

        我们也可以把多个张量连结(concatenate)在一起, 把它们端对端地叠起来形成一个更大的张量。 我们只需要提供张量列表,并给出沿哪个轴连结。 下面的例子分别演示了当我们==沿行(轴-0,形状的第一个元素) 和按列(轴-1,形状的第二个元素)==连结两个矩阵时,会发生什么情况。 我们可以看到,第一个输出张量的轴-0长度(6)是两个输入张量轴-0长度的总和(3+3); 第二个输出张量的轴-1长度(8)是两个输入张量轴-1长度的总和(4+4)。

X = torch.arange(12, dtype=torch.float32).reshape((3,4))
Y = torch.tensor([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
torch.cat((X, Y), dim=0), torch.cat((X, Y), dim=1)

运行结果: 

(tensor([[ 0.,  1.,  2.,  3.],
         [ 4.,  5.,  6.,  7.],
         [ 8.,  9., 10., 11.],
         [ 2.,  1.,  4.,  3.],
         [ 1.,  2.,  3.,  4.],
         [ 4.,  3.,  2.,  1.]]),
 tensor([[ 0.,  1.,  2.,  3.,  2.,  1.,  4.,  3.],
         [ 4.,  5.,  6.,  7.,  1.,  2.,  3.,  4.],
         [ 8.,  9., 10., 11.,  4.,  3.,  2.,  1.]]))

广播机制

        在上面的部分中,我们看到了如何在相同形状的两个张量上执行按元素操作。 在某些情况下,即使形状不同,我们仍然可以通过调用广播机制(broadcasting mechanism)来执行按元素操作。 这种机制的工作方式如下:

1.通过适当复制元素来扩展一个或两个数组,以便在转换之后,两个张量具有相同的形状。

2.对生成的数组执行按元素操作。

a = torch.arange(3).reshape((3, 1))
b = torch.arange(2).reshape((1, 2))
a, b

运行结果:

(tensor([[0],
         [1],
         [2]]),
 tensor([[0, 1]]))

        由于​​​​a​​​​和​​​​b​​​​分别是3×1和1×2矩阵,如果让它们相加,它们的形状不匹配。 我们将两个矩阵广播为一个更大的3×2矩阵,如下所示:矩阵​​​​a​​​​将复制列, 矩阵​​​​b​​​​将复制行,然后再按元素相加。

a + b

运行结果:

tensor([[0, 1],
        [1, 2],
        [2, 3]])

索引和切片

        就像在任何其他Python数组中一样,张量中的元素可以通过索引访问。 与任何Python数组一样:第一个元素的索引是0,最后一个元素索引是-1; 可以指定范围以包含第一个元素和最后一个之前的元素。

        如下所示,我们可以用​​​​[-1]​​​​选择最后一个元素(最后一行),可以用​​​​[1:3]​​​​选择第二个和第三个元素(第二行和第三行,前闭后开,索引从0开始):

# X的结构
# tensor([[ 0.,  1.,  2.,  3.],
#        [ 4.,  5.,  6.,  7.],
#        [ 8.,  9., 10., 11.]])
X[-1], X[1:3]

运行结果:

(tensor([ 8.,  9., 10., 11.]),
 tensor([[ 4.,  5.,  6.,  7.],
         [ 8.,  9., 10., 11.]]))

除读取外,我们还可以通过指定索引来将元素写入矩阵。

X[1, 2] = 9
X

运行结果:

tensor([[ 0.,  1.,  2.,  3.],
        [ 4.,  5.,  9.,  7.],
        [ 8.,  9., 10., 11.]])

        如果我们想为多个元素赋值相同的值,我们只需要索引所有元素,然后为它们赋值。 例如,​​​​[0:2, :]​​​​访问第1行和第2行,其中“:”代表沿轴1(列)的所有元素(前两行所有元素)。 虽然我们讨论的是矩阵的索引,但这也适用于向量和超过2个维度的张量。

X[0:2, :] = 12
X

运行结果:

tensor([[12., 12., 12., 12.],
        [12., 12., 12., 12.],
        [ 8.,  9., 10., 11.]])

转换为其他Python类型

        将深度学习框架定义的张量转换为NumPy张量(​​​​ndarray​​​​)很容易,反之也同样容易。 torch张量和numpy数组将共享它们的底层内存,就地操作更改一个张量也会同时更改另一个张量。

A = X.numpy()
B = torch.tensor(A)
type(A), type(B)

运行结果:

(numpy.ndarray, torch.Tensor)​​

要将大小为1的张量转换为Python标量,我们可以调用​​​​item​​​​函数或Python的内置函数。

a = torch.tensor([3.5])
a, a.item(), float(a), int(a)

运行结果:

​​(tensor([3.5000]), 3.5, 3.5, 3)​​

总结

        深度学习存储和操作数据的主要接口是张量(3维数组)。它提供了各种功能,包括基本数学运算、广播、索引、切片和转换其他Python对象。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值