在汽车研发管理领域,工具的选择对效率和成果起着关键作用。长期以来,Polarion作为西门子旗下的研发管理工具ALM,虽有一定优势,但随着电动汽车行业在中国的迅猛发展,其弊端愈发凸显,让从业者备受困扰。
一、“汽车人”之痛:Polarion用不起来
Polarion曾经因全面功能和稳定性受市场认可,但在新的开发文化背景下,问题重重。
1.学习成本极高,界面设计不合理、操作复杂,新用户望而却步,老用户也常陷入操作困境。
例如,Polarion操作界面充斥着过多选项卡和按钮,其界面风格设计更接近Windows XP这种拟物化风格设计(窗口有明显的立体感,边框、标题栏等部位通过渐变、阴影等效果营造出一种类似现实中物体的立体视觉感受,桌面图标也有一定的光影效果,整体给人一种相对柔和、亲切且易于上手的视觉体验,贴合当时大众对于电脑操作界面类似日常实物操作的认知习惯。),用户需要花费大量时间来熟悉这些功能。
相比之下,以飞书、MappingSpace为代表的国产软件工具简单易用,都采用更为简洁、实用的扁平化风格设计,组件的设计符合现代网页应用高效展示信息和操作交互的需求,通过简单的线条、清晰的图标和统一配色的按钮等元素构建出简洁明快的界面。
2.Polarion的培训资料稀缺。
遇到问题在网上难寻答案,只能求助同事或国外原厂,解决问题周期长,而且原厂几乎无法支持国内用户的二次开发需求,我们的二次开发需求都是找代理商做的,开发周期很长,而且每个代理商对于Polarion的理解都不一样,对于我们的业务需求,理解的也不一定到位,因此难以满足我们的时效性要求。这也是我们很难用起来的一个重要原因。
3.处理大规模数据时,Polarion响应迟缓,数据检索、搜索耗时,多人操作卡顿,拖累项目交付进度与质量。
我们查询了相关资料,Polarion的底层是SVN技术,而SVN的天然劣势就是,当并发量太高时,容易碰到性能瓶颈。
4.高昂的许可费用及后续成本。
即使是50人左右的团队,一次性的购买、部署成本也接近百万级别,如果还需要代理商做一些二次开发,费用就更高了。为了省钱,只能买浮动账户,限制了并发量,因而没有真正帮到我们做协作开发。
二、 国产工具的探索与发现
面对Polarion的种种不足,我们开始在国产工具中寻找解决方案。我们希望找到一款能够适应“软件定义汽车”时代的工具,它需要具备直观的用户界面、高效的协作能力、灵活的集成选项以及合理的成本。
在对比阶段,我们研究了多个国产研发管理工具,比如Jira、ones、pingcode、禅道等等,我们发现这些工具更适合做项目管理与任务追踪,离汽车行业的需求管理、ALM还有一定差距。最后,在前同事的推荐下,接触到MappingSpace。用下来确实不错,更加理解汽车行业的深层业务逻辑,整体软件也非常稳定成熟。
1.直观的用户界面和高效的需求管理
它采用思维导图式需求管理,相较于传统的Excel或Word记录方式,能直观呈现需求关联性与追溯性。通过浮窗和图例分色,项目经理可高效操作,需求编写与任务分配效率大幅提升。
在汽车研发的通用需求复用方面,MappingSpace可快速批量处理,在硬件需求管理上优势突出,有效节省成本。
2.灵活的文件和节点设置,适应不同团队需求
MappingSpace为团队提供丰富的项目设置选项,如创建项目模板、选择敏捷类型、配置用户和权限等,同时对文件和节点的定义灵活,满足不同团队的个性化需求。
3.与外部多种系统天然集成,并且提供丰富的API接口
提供的Open API极大地便利了与外部系统集成,系统管理员可轻松连接其他工具,其一站式管理平台能够覆盖从需求分析、架构设计、代码管理到CICD、测试管理的全部过程。
4.在线协同优势
MappingSpace构建的在线协同生态实现了信息实时同步,需求调整时相关人员能迅速响应。它与飞书、企微、钉钉等平台深度融合,用户在飞书中即可操作其功能,简化流程。
其知识库在线协同文档支持多人实时编辑,版本控制和历史记录完善,保障知识文档的准确性与完整性。
5.AI技术的应用
融入AIGC技术是MappingSpace的一大亮点,实现了“项目文档智能生成”、“行业监管与合规AI问答助手与知识库”、“AI绘制架构图”等AI在研发领域的创新应用场景。
6.高性能
针对大规模数据处理,MappingSpace经过优化,响应迅速,在ASPICE标准下管理精准、追溯高效,基线管理和变更操作便捷且可追溯,测试用例与需求追溯自动化程度高,避免人工错误。
7.成本效益
实话实说,比Polarion要低不少,很适合国内的团队,而且他们基本没有二开费用,每次有优化项,直接提给他们就好,一般都会在下个版本中免费升级。