FLAME人脸模型+blender 人脸编辑

FLAME介绍

看看官网  和 论文

官网 

FLAME (mpg.de)icon-default.png?t=M85Bhttps://flame.is.tue.mpg.de/ 论文:

论文

Learning a model of facial shape and expression from 4D scans (mpg.de)

 插件

FLAME blender 插件 

Flame 官网提供了blender插件,可以快速新建一个FLAME人脸模型并进行编辑。 

使用步骤 

------下载。地址在官网:进入download,在Models下选择FLAME Blender Add-on(FLAME 2020) 

 

 ------

  • 安装Blender
  • FLAME Blender AddOn中的Readme很详细,直接参考那个就行

FLAME 代码驱动变化

驱动表情、形状、姿势

D = bpy.data
key_block=D.shape_keys.get("Key.001")
for i in range(300):
    key_block.key_blocks["Shape"+str(i+1)].value=你设置的值

 把上面的Shape换成Exp或者Pose就是对表情和姿势进行操作

下巴

张嘴需要控制下巴的旋转,下巴作为一个关节存在,和前面所述的表情、形状均不同。

 

C = bpy.context
jaw=C.object.parent.pose.bones.get("jaw")
flame_jaw=你设置的数值
 jaw.rotation_mode = 'XYZ'
 jaw.rotation_euler = (radians(flame_jaw), 0.0, 0.0)
   

 

 

FLAME 人脸贴图

未完待续

 

 

<think>好的,我需要帮助用户了解如何在Blender中使用BlenderProc进行数据生成或处理。首先,我应该回顾用户提供的引用内容,看看有哪些关键信息可以利用。 用户提到了几个引用,其中引用[3]提到在Anaconda中创建虚拟环境并安装BlenderProc,引用[2]和[1]涉及文件夹结构和安装问题,引用[4]则关于生成数据集时替换背景。这些都是关键步骤,需要整合到回答中。 首先,安装部分。根据引用[3],用户需要在Anaconda中创建虚拟环境,安装Python 3.7,然后按照官方教程安装BlenderProc。这一步是基础,必须正确完成才能继续。 接下来,文件夹结构的准备。引用[2]指出需要特定的文件夹结构,比如在BlenderProc目录下放置模型、JSON配置和相机参数等。用户需要确保模型和配置文件正确放置,否则可能导致数据生成失败。 然后,数据生成流程。用户需要编写Python脚本,利用BlenderProc的模块导入模型、设置光照、调整相机位姿、渲染图像和导出数据。这部分可能需要参考官方文档,但引用中提到的替换背景(引用[4])也是一个有用的技巧,使用OpenCV处理生成的图像,替换背景为其他图片,比如COCO数据集中的背景。 此外,用户可能需要处理一些常见问题,比如环境配置错误或路径问题,如引用[1]提到的安装问题,需要确保Blender正确安装并与BlenderProc集成。 现在需要将这些步骤结构化,分点说明,确保用户能逐步操作。同时,生成相关问题,帮助用户深入理解可能遇到的后续问题,比如性能优化、复杂场景处理等。 需要检查是否有遗漏的步骤,比如Blender的安装是否在虚拟环境中,或者是否需要额外配置路径。根据引用[3],安装BlenderProc是按官方教程,可能需要克隆仓库或使用pip安装。此外,数据导出后的后处理步骤,如引用[4]的背景替换,可能需要额外的Python脚本处理,这部分也需要提及。 最后,确保回答符合格式要求:行内公式用$...$,独立公式用$$...$$,但在这个问题中可能用不到数学公式,但需要保持中文回答,结构清晰,引用标识正确添加。例如,在提到文件夹结构时引用[2],安装步骤引用[3],背景替换引用[4]等。 总结回答结构: 1. 环境配置(虚拟环境、安装BlenderProc) 2. 准备资源(模型、配置文件) 3. 编写脚本流程(加载模型、设置光照相机、渲染导出) 4. 后处理(背景替换) 5. 常见问题处理 6. 相关问题生成 需要确保每个步骤都包含必要的命令和代码示例,如创建虚拟环境的conda命令,以及Python脚本的示例片段。同时,提醒用户注意路径正确,配置文件格式正确,避免常见错误。</think>### BlenderBlenderProc集成使用指南 #### 1. 环境配置与安装 - **创建虚拟环境**: 使用Anaconda创建独立Python环境(推荐Python 3.7版本): ```bash conda create -n blender python=3.7 conda activate blender ``` 此步骤避免依赖冲突[^3]。 - **安装BlenderProc**: 按官方教程安装BlenderProc: ```bash git clone https://github.com/DLR-RM/BlenderProc.git cd BlenderProc pip install -e . ``` 同时需安装Blender软件,并确保其路径被系统识别[^1]。 #### 2. 资源准备 - **文件结构规范**: 在`BlenderProc`目录下按如下格式存放资源: ``` blenderproc ├── my_models # 存放3D模型(如.obj/.ply文件) ├── model_info.json # 模型物理属性配置文件 └── camera.json # 相机参数配置文件 ``` 确保模型路径与脚本中的加载路径一致[^2]。 #### 3. 数据生成脚本编写 - **基础流程代码示例**: ```python import blenderproc as bproc bproc.init() # 初始化BlenderProc # 加载模型 obj = bproc.loader.load_obj("my_models/obj_000001.obj")[0] obj.set_location([0, 0, 0]) # 设置光照 light = bproc.types.Light() light.set_type("POINT") light.set_location([2, -2, 3]) # 配置相机位姿 with open("camera.json") as f: cam_poses = bproc.camera.load_camera_poses(f) bproc.camera.set_camera_pose(cam_poses[0]) # 渲染并导出数据 data = bproc.renderer.render() bproc.writer.write_hdf5("output", data) ``` 此脚本完成模型加载、光照设置、相机位姿调整及渲染导出[^2][^4]。 #### 4. 后处理(背景替换) - **使用OpenCV替换背景**: 生成的图像默认背景为纯色,可通过以下代码替换为COCO等数据集中的背景: ```python import cv2 foreground = cv2.imread("output_rendered_image.png", cv2.IMREAD_UNCHANGED) background = cv2.imread("coco_background.jpg") mask = foreground[:, :, 3] > 0 # 利用Alpha通道分离前景 composite = background.copy() composite[mask] = foreground[mask, :3] cv2.imwrite("composite_image.png", composite) ``` 此方法提升数据集的真实感。 #### 5. 常见问题 - **路径错误**:检查模型文件路径是否与脚本中的路径匹配。 - **Blender未集成**:确认Blender可执行文件路径已添加至系统环境变量。 - **依赖冲突**:严格使用Python 3.7环境避免版本兼容性问题[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值