常用数学公式

本文介绍了概率论与数理统计中的常见分布,包括古典概型及其概率公式,条件概率、全概率公式和贝叶斯公式。接着详细讲解了两点分布、二项分布、泊松分布、指数分布、均匀分布和正态分布,涵盖其定义、概率分布函数、期望与方差,并探讨了正态分布的性质和标准化变换。
摘要由CSDN通过智能技术生成

古典概型

  1. 定义:
    (1) 试验中所有可能出现的基本事件只有有限个
    (2) 试验中每个基本事件出现的可能性相等
    具有以上两个特点的概率模型是大量存在的,这种概率模型称为古典概率模型,简称古典概型,也叫等可能概型
  2. 概率公式:
    PA=mn=Amn P ( A ) = m n = A 包 含 的 基 本 事 件 的 个 数 m 基 本 事 件 的 总 数 n

概率公式

条件概率

P(A|B)=P(AB)B P ( A | B ) = P ( A B ) B

全概率公式

P(A)=iP(A|Bi)P(Bi) P ( A ) = ∑ i P ( A | B i ) P ( B i )

贝叶斯公式

P(Bi|A)=P(A|Bi)P(Bi)jP(A|Bj)P(Bj) P ( B i | A ) = P ( A | B i ) P ( B i ) ∑ j P ( A | B j ) P ( B j )

P(A|B)=P(B|A)P(A)P(B) P ( A | B ) = P ( B | A ) P ( A ) P ( B )

给定某系统的若干样本x,计算该系统的参数,即
P(θ|x)=P(x|θ)P(θ)P(x) P ( θ | x ) = P ( x | θ ) P ( θ ) P ( x )

P(θ) P ( θ ) :没有数据的支持下, θ θ 发生的概率:先验概率。例如:在没有任何信息的前提下,猜测某人姓氏:先猜测李王张刘……猜对的概率比较大
P(θ|x) P ( θ | x ) :在数据的支持下, θ θ 发生的概率:后验概率。若知道某人来自“刘家村”,则他姓刘的概率比较大
P(x|θ) P ( x | θ ) :给定某参数 θ θ 的概率分布:似然函数

分布

两点分布(0-1分布/伯努利分布)

已知随机变量X的分布律为:

P(x=1)=pP(x=0)=1p P ( x = 1 ) = p , P ( x = 0 ) = 1 − p

则有:
E(X)=1p+0(1p)=p E ( X ) = 1 ⋅ p + 0 ⋅ ( 1 − p ) = p

D(X)=E(X2)[E(X)]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Vi_NSN

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值