古典概型
- 定义:
(1) 试验中所有可能出现的基本事件只有有限个;
(2) 试验中每个基本事件出现的可能性相等。
具有以上两个特点的概率模型是大量存在的,这种概率模型称为古典概率模型,简称古典概型,也叫等可能概型。 - 概率公式:
P(A)=mn=A包含的基本事件的个数m基本事件的总数n P ( A ) = m n = A 包 含 的 基 本 事 件 的 个 数 m 基 本 事 件 的 总 数 n
概率公式
条件概率
P(A|B)=P(AB)B P ( A | B ) = P ( A B ) B
全概率公式
P(A)=∑iP(A|Bi)P(Bi) P ( A ) = ∑ i P ( A | B i ) P ( B i )
贝叶斯公式
P(Bi|A)=P(A|Bi)P(Bi)∑jP(A|Bj)P(Bj) P ( B i | A ) = P ( A | B i ) P ( B i ) ∑ j P ( A | B j ) P ( B j )
P(A|B)=P(B|A)P(A)P(B) P ( A | B ) = P ( B | A ) P ( A ) P ( B )
给定某系统的若干样本x,计算该系统的参数,即
P(θ|x)=P(x|θ)P(θ)P(x) P ( θ | x ) = P ( x | θ ) P ( θ ) P ( x )
P(θ) P ( θ ) :没有数据的支持下, θ θ 发生的概率:先验概率。例如:在没有任何信息的前提下,猜测某人姓氏:先猜测李王张刘……猜对的概率比较大
P(θ|x) P ( θ | x ) :在数据的支持下, θ θ 发生的概率:后验概率。若知道某人来自“刘家村”,则他姓刘的概率比较大
P(x|θ) P ( x | θ ) :给定某参数 θ θ 的概率分布:似然函数
分布
两点分布(0-1分布/伯努利分布)
已知随机变量X的分布律为:
P(x=1)=p,P(x=0)=1−p P ( x = 1 ) = p , P ( x = 0 ) = 1 − p
则有:
E(X)=1⋅p+0⋅(1−p)=p E ( X ) = 1 ⋅ p + 0 ⋅ ( 1 − p ) = p
D(X)=E(X2)−[E(X)]