【Python】均值np.mean(),方差np.var(),标准差np.std()

本文详细解析了在Python中使用Numpy和Pandas库计算数据集的均值、方差和标准差的方法。重点阐述了两者在计算标准差时的不同:Numpy默认计算总体标准差,而Pandas默认计算样本标准差。通过实例展示了如何根据需求调整参数以获得准确的统计结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

numpy求均值、方差、标准差

import numpy as np 

arr = [1,2,3,4,5,6]
#求均值
arr_mean = np.mean(arr)
#求方差
arr_var = np.var(arr)
#求标准差
arr_std = np.std(arr,ddof=1)

numpy 的 .std() 和 pandas 的 .std()

 

在统计学中,

  • 如果是总体,标准差公式根号内除以 n;
  • 如果是样本,标准差公式根号内除以(n-1)

 

numpy 的 .std() 和 pandas 的 .std() 函数之间是不同的。

  • numpy 计算的是总体(母体)标准差,参数ddof = 0。
  • pandas 计算的是样本标准差,参数ddof = 1。

如果我们知道所有的分数,那么我们就有了总体——因此,要使用 pandas 进行归一化处理,我们需要将“ddof”设置为 0。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值