from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
# ---1. 加载数据---
# 修改为自己MNIST_data所在路径(从官网下载四个压缩包【不要解压】放在同一个文件夹【MNIST_data】里)
mnist = input_data.read_data_sets("D:/Python_code/Data/MNIST_data", one_hot=True)
# ---2. 构建回归模型---
# 定义回归模型
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.matmul(x, W) + b # 预测值
# 定义损失函数和优化器
y_ = tf.placeholder(tf.float32, [None, 10]) # 输入的真实值的占位符
# softmax_cross_entropy_with_logits() 计算预测值与真实值的差值,并取均值
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y, labels=y_))
# 采用SGD作为优化器
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
# ---3. 训练模型---
# InteractiveSession()创建交互式上下文的TensorFlow会话(与普通会话不同在于它会成为默认会话)
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
# Train
for _ in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
# ---4. 评估模型---
# 计算预测值和真实值是否相等,tf.equal([1,2],[1,1]) = [True,False]
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
# 取平均值,tf.cast(x, type) 将x转化为type类型
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# 计算模型在测试集上的准确率
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
【图像识别】MNIST的分类问题(BP神经网络)
最新推荐文章于 2024-07-09 17:26:44 发布