Pytorch显示图片

import torch
import torchvision
import matplotlib.pyplot as plt

batch_size = 512

train_loader = torch.utils.data.DataLoader(
    torchvision.datasets.MNIST('mnist data',train=True,download=True,
                               transform=torchvision.transforms.Compose([
                               torchvision.transforms.ToTensor(),
                               torchvision.transforms.Normalize((0.1307,),(0.3081,))])),
                                batch_size=batch_size,shuffle=True)

test_loader = torch.utils.data.DataLoader(
    torchvision.datasets.MNIST('mnist data/',train=False,download=True,
                               transform=torchvision.transforms.Compose([
                               torchvision.transforms.ToTensor(),
                               torchvision.transforms.Normalize((0.1307,),(0.3081,))])),
                                batch_size=batch_size,shuffle=False)

x,y = next(iter(train_loader))
plt.imshow(x[0].permute(1, 2, 0))  # 将通道维度调整到最后
plt.axis('off')  # 关闭坐标轴
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值