一、净额成交量
1、案例分析
- 符号数组a: [10 -20 30 40 -50]
- 用法:numpy.sign(a)
结果是[1 -1 1 1 -1] - 净额成交量:简称OBV,赚了是正,赔了是负
- 利用条件筛选来得到盈亏指标:一参是差分数组,二参是条件数组,三参是各个条件对应的值数组
2、第二种筛选方法
sign_closing_price = np.piecewise(
diff_closing_price,
[diff_closing_price < 0,
diff_closing_price == 0,
diff_closing_price > 0],
[-1, 0 , 1]
)
3、案例源码
import datetime as dt
import numpy as np
import matplotlib.pylab as mp
import matplotlib.dates as md
def dmy2ymd(dmy):
dmy = str(dmy, encoding='utf-8') # 转码dmy日期
date = dt.datetime.strptime(dmy, '%d-%m-%Y').date() # 获取时间对象
ymd = date.strftime('%Y-%m-%d')
return ymd
dates, closing_prices, volumes = np.loadtxt(
'0=数据源/beer_price2.csv', delimiter=',',
usecols=(0, 4, 5), unpack=True,
dtype=np.dtype('M8[D], f8, f8'),
converters={
0: dmy2ymd}
)
# 交易日的差分(后一天减去前一天)组成的差分数组,正的是赚了,负的是赔了
diff_closing_price = np.diff(closing_prices)
sign_closing_price = np.sign(diff_closing_price)
# print(diff_closing_price)
# print(sign_closing_price)
# 利用条件筛选来得到盈亏指标:一参是差分数组,二参是条件数组,三参是各个条件对应的值数组
sign_closing_price = np.piecewise(
diff_closing_price,
[diff_closing_price < 0,
diff_closing_price == 0,
diff_closing_price > 0],
[-1, 0, 1]
)
# 得到盈亏量,带正负的
obvs = volumes[1:] * sign_closing_price # 成交量乘盈亏指标,得到的是盈亏量
# 曲线图基础设置
mp.figure('On-Balance Volume', facecolor='lightgray')
mp.title('On-Balance Volume', fontsize=20)
mp.xlabel('Date', fontsize=