Python之数据分析(案例:净额成交量、矢量化、数据曲线平滑)

一、净额成交量

1、案例分析

  • 符号数组a: [10 -20 30 40 -50]
  • 用法:numpy.sign(a)
    结果是[1 -1 1 1 -1]
  • 净额成交量:简称OBV,赚了是正,赔了是负
  • 利用条件筛选来得到盈亏指标:一参是差分数组,二参是条件数组,三参是各个条件对应的值数组

2、第二种筛选方法

sign_closing_price = np.piecewise(
diff_closing_price,
[diff_closing_price < 0,
diff_closing_price == 0,
diff_closing_price > 0],
[-1, 0 , 1]
)

3、案例源码

import datetime as dt
import numpy as np
import matplotlib.pylab as mp
import matplotlib.dates as md


def dmy2ymd(dmy):
    dmy = str(dmy, encoding='utf-8')  # 转码dmy日期
    date = dt.datetime.strptime(dmy, '%d-%m-%Y').date()  # 获取时间对象
    ymd = date.strftime('%Y-%m-%d')
    return ymd

dates, closing_prices, volumes = np.loadtxt(
    '0=数据源/beer_price2.csv', delimiter=',',
    usecols=(0, 4, 5), unpack=True,
    dtype=np.dtype('M8[D], f8, f8'),
    converters={
   0: dmy2ymd}
)

# 交易日的差分(后一天减去前一天)组成的差分数组,正的是赚了,负的是赔了
diff_closing_price = np.diff(closing_prices)
sign_closing_price = np.sign(diff_closing_price)
# print(diff_closing_price)
# print(sign_closing_price)

# 利用条件筛选来得到盈亏指标:一参是差分数组,二参是条件数组,三参是各个条件对应的值数组
sign_closing_price = np.piecewise(
    diff_closing_price,
    [diff_closing_price < 0,
     diff_closing_price == 0,
     diff_closing_price > 0],
    [-1, 0, 1]
)

# 得到盈亏量,带正负的
obvs = volumes[1:] * sign_closing_price  # 成交量乘盈亏指标,得到的是盈亏量

# 曲线图基础设置
mp.figure('On-Balance Volume', facecolor='lightgray')
mp.title('On-Balance Volume', fontsize=20)
mp.xlabel('Date', fontsize=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鸿蒙Next

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值