机器学习算法地图

原文链接:https://mp.weixin.qq.com/s?__biz=MzU4MjQ3MDkwNA==&mid=2247485306&idx=1&sn=fc8cc8de313bdb61dcd39c1dedb240a4&chksm=fdb69aedcac113fb4b18c74248a313536ded50bade0e66b26f332ab247b148519da71ff2a3c0&mpshare=1&scene=2&srcid=0704CgV3WqPeg2eu9iRMI8UJ&from=timeline#rd
很多同学在学机器学习和深度学习的时候都有一个感受:所学的知识零散、不系统,缺乏整体感,这是普遍存在的一个问题。在这里,SIGAI对常用的机器学习和深度学习算法进行了总结,整理出它们之间的关系,以及每种算法的核心点,各种算法之间的比较。由此形成了一张算法地图,以帮助大家更好的理解和记忆这些算法。

算法地图:
这里写图片描述
图的左半部分列出了常用的机器学习算法与它们之间的演化关系,分为有监督学习,无监督学习,强化学习3大类。右半部分列出了典型算法的总结比较,包括算法的核心点如类型,预测函数,求解的目标函数,求解算法。
理解和记忆这张图,对系统掌握机器学习与深度学习会非常有帮助!

我们知道,整个机器学习算法可以分为有监督学习,无监督学习,强化学习3大类。除此之外还有半监督学习,但我们可以把它归到有监督学习中。算法的演变与发展大多在各个类的内部进行,但也可能会出现大类间的交叉,如深度强化学习就是深度神经网络与强化学习技术的结合。

根据样本数据是否带有标签值(label),可以将机器学习算法分成有监督学习和无监督学习两类。如果要识别26个英文字母图像,我们要将每张图像和它是哪个字符即其所属的类型对应起来,这个类型就是标签值。

有监督学习(supervised learning)的样本数据带有标签值,它从训练样本中学习得到一个模型,然后用这个模型对新的样本进行预测推断。它的样本由输入值x与标签值y组成:

(x,y) ( x , y )

其中x为样本的特征向量,是模型的输入值;y为标签值,是模型的输出值。标签值可以是整数也可以是实数,还可以是向量。有监督学习的目标是给定训练样本集,根据它确定映射函数:
y=f(x) y = f ( x )

确定这个函数的依据是函数能够很好的解释训练样本,让函数输出值f(x)与样本真实标签值y之间的误差最小化,或者让训练样本集的对数似然函数最大化。这里的训练样本数是有限的,而样本所有可能的取值集合在很多情况下是一个无限集,因此只能从中选取一部分样本参与训练。
日常生活中的很多机器学习应用,如垃圾邮件分类,手写文字识别,人脸识别,语音识别等都是有监督学习。这类问题需要先收集训练样本,对样本进行进行标注,用标注好的训练样本训模型,然后根据模型对新的样本进行预测。

无监督学习(unsupervised learning)对没有标签的样本进行分析,发现样本集的结构或者分布规律。无监督学习的典型代表是聚类数据降维

强化学习是一类特殊的机器学习算法,它根据输入数据确定要执行的动作,在这里。输入数据是环境参数。和有监督学习算法类似,这里也有训练过程中。在训练时,对于正确的动作做出奖励,对错误的动作做出惩罚,训练完成之后就用得到的模型进行预测。

一、在有监督学习算法中,我们列出了5个分支
这里写图片描述

分别是决策树,贝叶斯,线性模型,kNN,LDA(线性判别分析),集成学习。LDA也可以归类到线性模型中,但因为它是一种有监督的投影技术,我们单独列出。

(1)决策树是一种基于规则的方法,它的规则是通过训练样本学习得到的,典型的代表是ID3,C4.5,以及分类与回归树。

(2)集成学习是机器学习中一类重要的算法,它通过将多个简单的模型进行集成,得到一个更强大的模型,简单的模型称为弱学习器。决策树与集成学习算法相结合,诞生了随机森林,Boosting这两类算法(事实上,Boosting算法的弱学习器不仅可以用决策树,还可以用其他算法)。

(3)线性模型是最大的一个分支,从它最后衍生除了一些复杂的非线性模型。如果用于分类问题,最简单的线性模型是线性回归,加上L2和L1正则化项之后,分别得到岭回归和LASSO回归。对于分类问题,最简单的是感知器模型,从它衍生出了支持向量机,logistic回归,神经网络3大分支。而神经网络又衍生出了各种不同的结构。包括自动编码器,受限玻尔兹曼机,卷积神经网络,循环神经网络,生成对抗网络等。当然,还有其他一些类型的神经网络,因为使用很少,所以在这里不列出。

(4)kNN算法基于模板匹配的思想,是最简单的一种机器学习算法,它依赖于距离定义,而距离同样可以由机器学习而得到,这就是距离度量学习。

(5)贝叶斯也是有监督学习算法中的一个大分支,最简单的是贝叶斯分类器,更复杂的有贝叶斯网络。而贝叶斯分类器又有朴素贝叶斯和正态贝叶斯两种实现。

二、接下来说无监督学习,它可以分为数据降维算法和聚类算法两大类。演变关系如下图所示:
这里写图片描述

(1)无监督的降维算法可以分为线性降维和非线性降维两大类。前者的典型代表是主成分分析(PCA),通过使用核技术,可以把它扩展为非线性的版本。流形学习是非线性降维技术的典型实现,代表性的算法有局部线性嵌入(LLE),拉普拉斯特征映射,等距映射,局部保持投影,它们都基于流形假设。流形假设不仅在降维算法中有用,在半监督学习、聚类算法中同样有使用。

(2)聚类算法可以分为层次距离,基于质心的聚类,基于概率分布的距离,基于密度的聚类,基于图的聚类这几种类型。它们从不同的角度定义簇(cluster)。基于质心的聚类典型代表是k均值算法。基于概率分布的聚类典型代表是EM算法。基于密度的聚类典型代表是DBSCAN算法,OPTICS算法,Mean shift算法。基于图的聚类典型代表是谱聚类算法。

三、强化学习是机器学习中的一个特殊分支,用于决策、控制问题。这类算法的演变关系如下图所示:
这里写图片描述

整个强化学习的理论模型可以抽象成马尔可夫决策过程。核心任务是求解使得回报最大的策略。如果直接用动态规划求解,则有策略迭代和价值迭代两类算法。他们都要求有精确的环境模型,即状态转移概率和奖励函数。如果做不到这一点,只能采用随机算法,典型的代表是蒙特卡罗算法和时序差分算法。强化学习与深度学习相结合,诞生了深度强化学习算法,典型代表是深度Q网络(DQN)以及策略梯度算法(策略梯度算法不仅可用神经网络作为策略函数的近似,还可以用其他函数)。

四、下面我们来分别介绍每种算法的核心知识点以及它们之间的关系

## 有监督学习 ## ## 有监督学习 ##

先看有监督学习算法,它是当前实际应用中使用最广的机器学习算法。进一步可以分为分类问题与回归问题两大类。前面说过,有监督学习算法的预测函数为:
y=f(x) y = f ( x )

即根据输入数据x预测输出数据y。如果y是整数的类别编号,则称分类问题;如果y是实数值,则为回归问题。

注:回归问题解决的是对具体数值的预测。解决回归问题的神经网络一般只有一个输出节点,这个节点的输出值就是预测值。对于回归问题,最常用的损失函数是均方误差(MSE, mean square error)。在只有一个正确答案的分类问题中,tf.nn.sparse_softmax_cross_entropy_with_logits函数用来进一步加速计算进程。

1、贝叶斯分类器
分类问题中样本的特征向量取值x与样本所属类型y具有因果关系。因为样本属于类型y,所以具有特征值x。分类器要做的则相反,是在已知样本的特征向量为x的条件下反推样本所属的类别y。根据贝叶斯公式有:

p(y|x)=p(x|y)p(y)p(x) p ( y | x ) = p ( x | y ) p ( y ) p ( x )

只要知道特征向量的概率分布 p(x) p ( x ) ,每一类出现的概率 p(y) p ( y ) ,以及每一类样本条件概率 p(x|y) p ( x | y ) ,就可以计算出样本属于每一类的概率 p(y|x) p ( y | x ) 。如果只要确定类别,比较样本属于每一类的概率大小,找出该值最大的那一类即可。因此可以忽略 p(x) p ( x ) ,因为它对所有类都是一样的。简化后分类器的判别函数为:
argmaxyp(y|x)=p(x|y)p(y) a r g m a x y p ( y | x ) = p ( x | y ) p ( y )

训练时的目标是确定 p(x|y) p ( x | y ) 的参数,一般使用最大似然估计。如果假设样本特征向量的各个分量之间互相独立,则称为朴素贝叶斯分类器。如果假设特征向量x服从多维正态分布,则称为正态贝叶斯分类器。正态贝叶斯分类器的预测函数为:
mincln(|Σ|c)+((xμc)TΣc1(xμc)) m i n c l n ( | Σ | c ) + ( ( x − μ c ) T Σ c − 1 ( x − μ c ) )

贝叶斯分类器是一种生成模型,是非线性模型,它天然的支持多分类问题。下图是正态贝叶斯分类器对异或问题的分类结果(来自SIGAI云端实验室):
这里写图片描述
2、决策树家族
决策树是基于规则的方法,它用一组嵌套的规则进行预测,在树的每个决策节点处,根据判断结果进入一个分支,反复执行这种操作直到到达叶子节点,得到决策结果。决策树的这些规则通过训练得到,而不是人工定制的。下图是一个决策树的栗子:
这里写图片描述
决策树是一种判别模型,也是非线性模型,天然支持多分类问题。它既可以用于分类问题,也可以用于回归问题,具有很好的解释性,符合人类的思维习惯。常用的决策树有ID3、C4.5,分类与回归树(CART)等。

分类树对应的映射函数是多维空间的分段线性划分,即用平行于各个坐标轴的超平面对空间进行切分;回归树的映射函数是一个分段常数函数。决策树是分段线性函数但不是线性函数,它具有非线性建模的能力。只要划分的足够细,分段常数函数可以逼近闭区间上任意函数到任意指定精度,因此决策树在理论上可以对任意复杂度的数据进行分类或回归。

下图是决策树进行空间划分的一个例子。在这里有红色和蓝色两类训练样本,用下面两条平行于坐标轴的直线可以将这两类样本分开:
这里写图片描述

这个划分方案对应的决策树如下图所示:
这里写图片描述
对于分类与回归树,训练每个节点时的目标是要让Gini不纯度最小化,等价于让下面的值最大化:

G=N2L,iNL+N2R,iNR G = ∑ N L , i 2 N L + ∑ N R , i 2 N R

决策树训练求解时采用了枚举搜索和贪婪法的思想,找到的不一定是结构最优的树。
3、kNN算法
kNN算法基于以下思想:要确定一个样本的类别,可以计算它与所有训练样本的距离,然后找出和该样本最接近的k个样本,统计这些样本的类别进行投票,票数最多的那个类就是分类结果。因为直接比较样本和训练样本的距离,kNN算法也被称为基于实例的算法,这实际上是一种模板匹配的思想。

下图是使用k近邻思想进行分类的一个例子:
这里写图片描述
上图中有红色和绿色两类样本。对于待分类样本即图中的黑色点,我们寻找离该样本最近的一部分训练样本,在图中是以这个矩形样本为圆心的某一圆范围内的所有样本,然后统计这些样本所属的类别,在这里红色点有12个,绿色有2个,因此把这个样本判定为红色这一类。上面的栗子是二分类的情况,可以推广到多类,k近邻算法天然支持多分类问题,它是一种判别模型,也是非线性模型。下图是kNN算法对异或问题的分类结果:
这里写图片描述
kNN算法依赖于样本距离值,常用的距离有欧氏距离,Mahalanobis距离等。这些距离定义中的参数可以通过学习得到,如Mahalanobis距离中的矩阵S,这称为距离度量学习。

4、线性模型家族
线性模型的预测函数是线性函数,既可以用于分类问题,也可以用于回归问题,这是机器学习算法中的一个庞大家族。从线性模型中衍生出了多种机器学习算法,对于回归问题,有岭回归,LASSO回归;对于分类问题,有SVM,logistic回归,softmax回归,人工神经网络(多层感知机模型),以及后续的各种深度神经网络。

对于分类问题,线性模型的预测函数为:

sgn(wTx+b) s g n ( w T x + b )

其中sgn是符号函数。最简单的线性分类器是感知器算法,它甚至无法解决经典的异或问题,不具有太多的实用价值。

对于回归问题,线性模型的预测函数为:

wT+b w T + b

训练时的目标是最小化均方误差:
min12l(wTiyi)2 m i n 1 2 l ∑ ( w i T − y i ) 2

可以证明,这是一个凸优化问题,可以的到全局极小值。求解时可以采用梯度下降法或牛顿法。

岭回归是线性回归的L2正则化版本,训练时求解的问题为:

minw12l(wTxiyi)2+λ||w||22 m i n w 1 2 l ∑ ( w T x i − y i ) 2 + λ | | w | | 2 2

如果系数 λ>0 λ > 0 ,这个问题是一个严格凸优化问题,可用梯度下降法,牛顿法求解。

LASSO回归是线性回归的L1正则化版本,训练时求解的问题为:

minw12l(wTxiyi)2+λ||w||1 m i n w 1 2 l ∑ ( w T x i − y i ) 2 + λ | | w | | 1

同样的,这是一个凸优化问题,可用梯度下降法和牛顿法求解。

线性判别分析(LDA)是一种有监督的线性投影技术,它寻找向低维空间的投影矩阵W,样本的特征向量x经过投影之后得到新的向量y:

y=Wx y = W x

投影的目标是同一类样本投影后的结果向量差异尽可能小,不同类的样本差异尽可能大。直观来看,就是经过这个投影之后同一类的样本进来聚集在一起,不同类的样本尽可能离得远。下图是这种投影的示意图:

这里写图片描述
训练时的求解目标是最大化类间差异与类内差异的比值:

maxL(W)=tr(WTSBW)tr(WTSWW) m a x L ( W ) = t r ( W T S B W ) t r ( W T S W W )

最后归结为求解矩阵的特征值和特征向量:
SBwi=λiSWwi S B w i = λ i S W w i

如果我们要将向量投影到c-1维,则挑选出最大的c-1个特征值以及它们对应的特征向量,组成矩阵W。线性判别分析不能直接用于分类问题,它只是完成投影,投影之后还需要用其他算法进行分类,如kNN。下图是LDA降维之后用最小距离分类器分类的结果:
这里写图片描述
从这张图可以看出,决策面是直线。LDA是一种线性模型,也是判别模型,只能用于分类问题。

logistic回归即对数几率回归,它的名字虽然叫回归,但却是一种用于二分类问题的分类算法,它用sigmoid函数估计出样本属于某一类的概率。这种算法可以看做是对线性分类器的改进。
预测函数为:

h(x)=11+exp(wTx) h ( x ) = 1 1 + e x p ( − w T x )

其中为线性映射权向量,由训练算法确定。训练时的优化目标是最大化对数似然函数:

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值