棋盘方格(3月29日)

文章描述了一种算法来计算n*m棋盘中正方形和长方形的总数。通过遍历不同边长的正方形并排除重复计数,得出总数量,然后减去正方形的数量得到长方形的数量。例如,当n=2,m=3时,有8个正方形和10个长方形。程序实现了这一逻辑,输入n和m,输出正方形和长方形的计数。
摘要由CSDN通过智能技术生成

说明
设有一个n*m方格的棋盘(1≤m,n≤100)。

求出该棋盘中包含多少个正方形、多少个长方形(不包括正方形)。

例如:

   当n=2,m=3时

正方形的个数有8个,即边长为1的正方形有6个,边长为2的正方形有2个。

长方形的个数有10个:

2*1的长方形有4个;

1*2的长方形有3个;

3*1的长方形有2个;

3*2的长方形有1个。

输入格式
每个测试文件只包含一组测试数据,每组输入两个正整数n和m。

输出格式
对于每组输入数据,出该棋盘中包含的正方形个数和长方形个数。

样例
输入数据 1
2 3
输出数据 1
8 10

#include<bits/stdc++.h>
using namespace std;
int n, m;
int main() {
	cin >> n >> m;
	int shu = (1 + n) * n * (1 + m) * m / 4;
	//宽为1的长方形和正方形有m个,宽为2的长方形和正方形有m-1个,┉┉,宽为m的长方形和正方形有1个;
	//长为1的长方形和正方形有n个,长为2的长方形和正方形有n - 1个,┉┉,长为n的长方形和正方形有1个;
	int sum = 0;
	for (int i = 0; i <= min(n, m); ++i)
	{
		sum += (n - i) * (m - i);//边长为1的正方形个数为nm
			//边长为2的正方形个数为(n - 1)(m - 1)
			//边长为3的正方形个数为(n - 2)(m - 2)
			//min{n,m}的正方形个数为(m-min{n,m}+1)(n-min{n,m}+1)
	}
	cout << sum<<" " << shu - sum;//总体减正方形
	return 0;
}

利用找规律,先看长不管宽,再看宽不管长,可以找出矩形和正方形的总共的数量,再计算正方形的数量,可得长方形的数量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

冬樱春雪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值