说明
设有一个n*m方格的棋盘(1≤m,n≤100)。
求出该棋盘中包含多少个正方形、多少个长方形(不包括正方形)。
例如:
当n=2,m=3时
正方形的个数有8个,即边长为1的正方形有6个,边长为2的正方形有2个。
长方形的个数有10个:
2*1的长方形有4个;
1*2的长方形有3个;
3*1的长方形有2个;
3*2的长方形有1个。
输入格式
每个测试文件只包含一组测试数据,每组输入两个正整数n和m。
输出格式
对于每组输入数据,出该棋盘中包含的正方形个数和长方形个数。
样例
输入数据 1
2 3
输出数据 1
8 10
#include<bits/stdc++.h>
using namespace std;
int n, m;
int main() {
cin >> n >> m;
int shu = (1 + n) * n * (1 + m) * m / 4;
//宽为1的长方形和正方形有m个,宽为2的长方形和正方形有m-1个,┉┉,宽为m的长方形和正方形有1个;
//长为1的长方形和正方形有n个,长为2的长方形和正方形有n - 1个,┉┉,长为n的长方形和正方形有1个;
int sum = 0;
for (int i = 0; i <= min(n, m); ++i)
{
sum += (n - i) * (m - i);//边长为1的正方形个数为nm
//边长为2的正方形个数为(n - 1)(m - 1)
//边长为3的正方形个数为(n - 2)(m - 2)
//min{n,m}的正方形个数为(m-min{n,m}+1)(n-min{n,m}+1)
}
cout << sum<<" " << shu - sum;//总体减正方形
return 0;
}