- Evolutionary Algorithms(进化计算)
- 由自然界获得灵感
- Overview
- 初始种群
- 适应度计算
- 变异
- 复制
- 进化论
- 非强者生存而是适者生存
- 孟德尔
- Learning from Nature
- 从自然中获得灵感而不是简单得拷贝、克隆
- Motivation of EAs(学习进化计算的意义)
- 优化计算(在尽可能短的时间内完成定量的任务;在投资一定的条件下获得最高的收益等等)
- 模拟自然界的进化
- Key Concepts(关键概念)
- 好处
- Population-based:人多力量大
- parallel:并行的,不容易陷入局部最优点
- bionics:非常好的仿生学的例子(把从自然中学到的东西在计算机上实现)
- the fittest:适者生存
- Chromsome:染色体
- Crossover:杂交
- Mutation:变异
- Metaheuristics:共通启发式演算法(heuristics启发法)
- Bio-/Nature Inspired:自然界启发来的
- stochastic:随机的、猜测的
- inherently:内在地,固有地
- 好处
- The Big Picture
- 提出问题(Problem)
- 问题转化为机器能够执行的内容(Coding)
- (利用领域知识Domain Knowledge)定义目标函数,例如时间、花销、距离等等(Objective Function)
- Evolutionary Search
- Evaluate:评价现有方案路线的好坏
- Select:挑选相对好的
- Crossover:杂交
- Mutate:变异
- 希望生成更好的
- EA Family
- Genetic Algorithm:遗传算法
- Evolution Strategies:进化策略
- Estimation of Distribution Algorithm:分布估计算法
- particle swarm optimization:粒子群优化
- Ant Colony Optimization:蚁群优化算法
- Differential Evolution:差分进化
- 例子
- 蚁群
- 由于信息素随时间逐渐消散的缘故,蚂蚁运动路径会逐渐收敛到最短路径(不是绝对,而是概率)
- 鸟群
- 使用粒子群算法,可以模拟鸟群、鱼群等的运动轨迹
- 每个粒子下一时刻的位置取决于
- 整个群体最好的位置;
- 当前粒子曾经看到过的最好的位置
- 粒子当前的位置
- 蚁群
10.1人与自然
最新推荐文章于 2025-04-25 16:08:23 发布