欧拉路汉密尔顿路概念等

http://www.cdrtvu.com/media_file/2008/04/18/d38596fd-3749-4201-82a9-6185a830a7f3/001.html

  一、概念

   定义4.1.1(欧拉路、欧拉回路、欧拉图) 给定无孤立结点图G,若存在一条路经过图G的每条边一次且仅一次,则该路称为欧拉路

   若存在一条回路经过图G的每条边一次且仅一次,在该回路称为欧拉回路

   具有欧拉回路的图称为欧拉图

   具有欧拉路但无欧拉回路的图称为半欧拉图

  定义4.1.2(单向欧拉路、单向欧拉回路) 给定有向图G,通过图中的每边一次且仅一次的一条单向路(回路),称作单向欧拉路回路).

  定义4.2.1(汉密尔顿路、汉密尔顿回路、汉密尔顿图) 给定图G,若存在一条路经过图G的每个结点一次且仅一次,则该路称为汉密尔顿路;若存在一条回路经过图G的每个结点一次且仅一次,在该回路称为汉密尔顿回路

  具有汉密尔顿回路的图称为汉密尔顿图(H图).

  定义4.3.1(平面图) 设G=<V,E>是一个无向图,如果能把G的所有结点与边画在平面上,并且使得任何两条边除端点外没有其他的交点,则称G是一个平面图(也称可平面图).

  定义4.3.2(平面图的面、面的边界、面的次数、无限面、有限面)设G是一个连通平面图,如果由图中的边所包围的一个区域内既不包含图的结点,也不包含图的边,则这个区域称为G的一个,包围该面的所有边所构成的回路称为这个面的边界

   面r的边界的回路长度称为该面的次数,记为deg(r).

  不受边界约束的面称为无限面(外部面).

  受边界约束的面称为有限面(内部面).

  定义4.3.3(2度结点) 设e=(u,v)为给定图G中的一条边,在G中删除e,增加新的结点w,使u与v均同w相邻,即G’=(G-e)È{(u,w),(w,v)},则称在G中插入2度结点w.

   设w为G 中一个2度结点,w与u,v相邻,删除w,增加新边(u,v),即G’=(G-w)È{(u, v)},则称在G中消去2度结点w.

  定义4.3.4(同胚) 给定两个图G1和G2,如果它们是同构的,或者通过插入或消去度数为2的结点后,使G1和G2同构,则称该两图是同胚的(在2度结点内同构的).

  定义4.4.1(对偶图) 给定平面图G=〈V,E〉,它有面F1,F2,…,Fn,若有图G*=〈V*,E*〉满足下述条件:

   ⑴对于图G的任一个面Fi,内部有且仅有一个结点vi*∈V*;

  ⑵对于图G的面Fi,Fj的公共边ek,存在且仅存在一条边ek*∈E*,使ek*=(vi*,vj*),且ek*和ek相交;

   ⑶当且仅当ek只是一个面Fi的边界时,vi*存在一个环ek*和ek相交;

  则图G*是图G的对偶图

  定义4.4.2(自对偶图) 如果图G的对偶图G*同构于G,则称G是自对偶的.

  定义4.4.3(正常着色) 用几种颜色给一个图G的结点着色,若没有两个邻接的结点着上同样的颜色,就称为给图G正常着色.

   定义4.4.4(着色数) 如果给图G正常着色用了n种颜色,则称G为n-色的.对于图G着色时需要的最少颜色数称为G的着色数,记作x(G).

  二、定理

  定理4.1.1无向图G具有一条欧拉路,当且仅当G是连通的,且有零个或2个奇数的顶点.

  定理4.1.1推论一个无向图具有一条欧拉回路,当且仅当该图是连通的,并且它的结点次数都是偶数.

  定理4.1.2 一个有向图具有单向欧拉回路,当且仅当它是连通的,且每个结点的入度等于出度.一个有向图具有单向欧拉路,当且仅当它是连通的,且每个结点的入度等于出度,但可能有两个结点例外,对此两结点,一个结点的入度比它的出度大1,另一个结点的入度比它的出度小1.

  定理4.2.1 若图G=<V,E>中具有一条汉密尔顿回路,则对于结点集V的每个非空子集S均有W(G-S)£ |S|成立,其中W(G-S)是(G-S)中连通分支数.

  定理4.2.1推论 若无向图G=<V,E>是半汉密尔顿图,则对于V的任意非空子集S均有W(G-S)£ |S|+1成立,其中W(G-S)是(G-S)中连通分支数.

  定理4.2.2设G=<V,E>是具有n个结点的简单图,若在G中每一对结点度数之和大于等于n-1,则在G中存在一条汉密尔顿路.

  定理4.2.3 设G是具有n个结点的简单图,若G中每一对结点度数之和大于等于n,则在G中存在一条汉密尔顿回路.

  定理4.3.1 一个有限平面图,面的次数之和等于其边数的两倍.

  定理4.3.2(欧拉定理)设连通平面图G的结点数为v,边数为e,面数为r,则欧拉公式v-e+r =2成立.

  定理4.3.3设G是一个有v个结点e条边的连通简单平面图,若v≥3,则e≤3v-6.

  定理4.3.4 K3,3为非平面图.

  定理4.3.5(kuratowski-库拉托夫斯基定理)一个图是平面图,当且仅当其不包含与K3,3或K5同胚的子图.

  定理4.4.1 对于n个结点的完全图Kn,有x(Kn)=n.

  定理4.4.2设G是一个至少具有三个结点的连通平面图,则G中必有一个结点u,使得deg(u)≤5.

  定理4.4.3任意平面图G最多是5-色的.

  三、方法

  1.求欧拉回路的Fleury算法

  (1)任取v0 ÎV(G),设P0=v0;

  (2)设Pi=v0e1v1e2...eivi已经行遍,则按下述方法从E(G)-{e1,e2,…, ei}中选取ei+1 :

    a) ei+1与vi相关联;

    b) 除非无其他边可供行遍,否则ei+1不应为Gi=G-{e1,e2,…, ei}中的桥;

    c) 当b)不能再进行时,算法结束.

  2.对图进行着色的韦尔奇·鲍威尔法(Welch Powell) .

   ⑴将图G的结点按照度数的递减次序进行排列.(这种排列可能并不是唯一的,因为有些点有相同的度数).

   ⑵用第一种颜色对第一点进行着色,并且按排列次序,对与前面着色点不邻接的每一点着上同样的颜色.

   ⑶用第二种颜色对尚未着色的点重复⑵,用第三种颜色继续这种做法,直到所有的点全部着上色为止.


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值