链接:
#include <stdio.h>
int main()
{
puts("转载请注明出处[vmurder]谢谢");
puts("网址:blog.csdn.net/vmurder/article/details/44647001");
}
莫比乌斯反演公式
若
Fn=∑d|nfd
则
fn=∑d|nFnd∗μd
其中
μ
是莫比乌斯函数,跟
F
和
莫比乌斯函数
当
d=1
时:
μd=1
当
d
可以被拆解成
μd=(−1)k
其它情况下:
μd=0
题解:
首先数论题嘛,想到(cha dao)用莫比乌斯反演。
然后很明了了。
我们设
fi,j
为答案函数,也就是gcd==k的数对的个数。
那么
F
就也出来了,根据莫比乌斯反演公式那个破形式,就是gcd是k的倍数的数对的对数。(当然其实很多时候都是发现
然后
Fi,j
很好求,就是
⌊ik⌋∗⌊jk⌋
。。之后反演回去可以线性得到
fi,j
但是这样期望很快,不过当 k==1 时,回代将是 O(n) 的,因为好多组询问,所以无法承受。
这时我们发现回代时对于某些
i,j
,它的
F
是相同的,而这个“相同”,剩下的不相同的数,是根号级别的。然后我们可以分块处理相同的部分,
代码:
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 101000
#define inf 0x3f3f3f3f
using namespace std;
int mu[N],prime[N],cnt;
bool vis[N];
int sum_of_mu[N];
void shake()
{
int i,j;
sum_of_mu[1]=mu[1]=1;
for(i=2;i<N;i++)
{
if(!vis[i])
{
mu[i]=-1;
prime[++cnt]=i;
}
for(j=1;i*prime[j]<N&&j<=cnt;j++)
{
vis[i*prime[j]]=true;
if(i%prime[j])mu[i*prime[j]]=-mu[i];
else break;
}
sum_of_mu[i]=sum_of_mu[i-1]+mu[i];
}
}
int k;
long long calc(int n,int m)
{
n/=k,m/=k;
long long ret=0;
int i,j,lim=min(n,m);
for(i=1;i<=lim;i=j+1)
{
j=min(n/(n/i),m/(m/i));
ret+=(long long)(n/i)*(m/i)*(sum_of_mu[j]-sum_of_mu[i-1]);
}
return ret;
}
inline long long Calc(int a,int b,int c,int d)
{return calc(b,d)-calc(a-1,d)-calc(b,c-1)+calc(a-1,c-1);}
int main()
{
shake();
int a,b,c,d,g;
for(scanf("%d",&g);g--;)
{
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
printf("%lld\n",Calc(a,b,c,d));
}
return 0;
}