【BZOJ2301】【HAOI2011】Problem b 莫比乌斯反演+分块+前缀和

链接:

#include <stdio.h>
int main()
{
    puts("转载请注明出处[vmurder]谢谢");
    puts("网址:blog.csdn.net/vmurder/article/details/44647001");
}

莫比乌斯反演公式

Fn=d|nfd
fn=d|nFndμd
其中μ是莫比乌斯函数,跟Ff无关。

莫比乌斯函数

d=1时:
μd=1
d可以被拆解成k个质因数之积且这些质因数两两不同时:
μd=(1)k
其它情况下:
μd=0

题解:

首先数论题嘛,想到(cha dao)用莫比乌斯反演。
然后很明了了。
我们设fi,j为答案函数,也就是gcd==k的数对的个数。
那么F就也出来了,根据莫比乌斯反演公式那个破形式,就是gcd是k的倍数的数对的对数。(当然其实很多时候都是发现F很好求,并且导到f的形式符合莫比乌斯函数,才会去用。但是有的时候不妨去看答案函数作为fF是什么,然后看F是否好求)
然后Fi,j很好求,就是ikjk。。之后反演回去可以线性得到fi,j

但是这样期望很快,不过当k==1时,回代将是O(n)的,因为好多组询问,所以无法承受。

这时我们发现回代时对于某些i,j,它的F是相同的,而这个“相同”,剩下的不相同的数,是根号级别的。然后我们可以分块处理相同的部分,Fμ就变成了一段段的Fsumμ

代码:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 101000
#define inf 0x3f3f3f3f
using namespace std;
int mu[N],prime[N],cnt;
bool vis[N];

int sum_of_mu[N];
void shake()
{
    int i,j;
    sum_of_mu[1]=mu[1]=1;
    for(i=2;i<N;i++)
    {
        if(!vis[i])
        {
            mu[i]=-1;
            prime[++cnt]=i;
        }
        for(j=1;i*prime[j]<N&&j<=cnt;j++)
        {
            vis[i*prime[j]]=true;
            if(i%prime[j])mu[i*prime[j]]=-mu[i];
            else break;
        }
        sum_of_mu[i]=sum_of_mu[i-1]+mu[i];
    }
}
int k;
long long calc(int n,int m)
{
    n/=k,m/=k;
    long long ret=0;
    int i,j,lim=min(n,m);
    for(i=1;i<=lim;i=j+1)
    {
        j=min(n/(n/i),m/(m/i));
        ret+=(long long)(n/i)*(m/i)*(sum_of_mu[j]-sum_of_mu[i-1]);
    }
    return ret;
}
inline long long Calc(int a,int b,int c,int d)
{return calc(b,d)-calc(a-1,d)-calc(b,c-1)+calc(a-1,c-1);}
int main()
{
    shake();
    int a,b,c,d,g;
    for(scanf("%d",&g);g--;)
    {
        scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
        printf("%lld\n",Calc(a,b,c,d));
    }
    return 0;
}
发布了392 篇原创文章 · 获赞 12 · 访问量 66万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览