透视变换与单应性变换详解及代码示例

本文深入解析透视变换和单应性变换在计算机视觉中的应用,包括透视变换纠正图像透视畸变、单应性变换用于图像拼接和校正。通过OpenCV库展示了具体的代码示例,帮助理解这两种变换的实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

透视变换和单应性变换是计算机视觉中常用的技术,用于对图像进行几何形变。本文将详细介绍透视变换和单应性变换的原理,并提供相应的代码示例来演示它们的应用。

一、透视变换

透视变换是一种将二维平面上的图像映射到三维空间中的投影变换。它可以用于纠正图像中的透视畸变,或者将图像投影到其他视角下。

透视变换的原理基于相机的投影模型,其中相机与场景之间存在一种投影关系。OpenCV提供了cv2.warpPerspective()函数来执行透视变换。下面是一个示例代码,演示如何使用透视变换将图像进行投影变换:

import cv2
import numpy as np

# 原始图像的四个角点坐标
src_points = np.float32([[
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值