密度聚类是一种无监督学习方法,用于将数据点划分为具有高密度的区域和低密度的区域。DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是密度聚类中最常用的算法之一。本文将详细介绍DBSCAN算法的原理和实现,并通过提供相应的源代码来帮助读者更好地理解该算法。
DBSCAN算法的原理
DBSCAN算法基于密度可达的概念来划分数据点。一个数据点被认为是核心点(core point),如果在以该点为中心、以给定半径ε内包含至少MinPts个数据点。换句话说,核心点是位于高密度区域内的点。
DBSCAN算法的主要步骤如下:
- 初始化:设置半径ε和最小样本点数MinPts。
- 选择任意未访问的数据点P。
- 如果P是核心点,则创建一个新的簇并将P加入其中。然后,通过密度可达的关系将P的所有邻居点加入该簇。
- 重复步骤3,直到无法再找到新的核心点。
- 如果P不是核心点但是密度可达于某一簇的边界点,则将P加入该簇。
- 重复步骤2至步骤5,直到所有数据点都被访问。
- 算法结束,得到一组簇。
DBSCAN算法的关键概念是ε-邻域和密度可达性。给定一个数据点P和半径ε,P的ε-邻域包含所有与P的距离小于等于ε的数据点。如果一个数据点Q位于P的ε-邻域中,且P是核心点,那么Q