SFM(structure from motion 从运动恢复结构)和MVS(multi-view stereo 多视图立体视觉)

1、主要目的:

SFM是可以重建稀疏点云的和相机参数(内外), 主要目的是:estimating the geometry of the scene and camera poses from a set of images. 使用场景最多还是标定相机内外参。

MVS重建的是稠密点云。

输入的数据:SFM是没有标定的图像,而MVS输入的是标定的图像(具有相机参数),

PS:相机参数可以通过SFM标定,所以如果从一组图像中重建三维模型,我们可以首先采用SFM标定相机内外参,然后根据标定结果进行稠密点云重建。

2、为什么SFM无法重建出稠密的点云,但是MVS可以?

SFM中我们用来做重建的点是由特征匹配提供的!这些匹配点天生不密集!MVS则几乎对照片中的每个像素点都进行匹配,几乎重建每一个像素点的三维坐标,这样得到的点的密集程度可以较接近图像为我们展示出的清晰度。

SFM和MVS关系

SFM给MVS算好了输入视角的位姿,内参,稀疏点云以及它们的共视关系,MVS再利用这些信息以及彩色图来估计深度图以及做最后的Fusion,还有点云过滤等等的。SFM是camera tracking, 而MVS是depth map estimation和depth fusion。在实际使用中,一般是SFM进行相机标定,然后采用MVS重建稠密点云。

3、详细介绍SFM算法。

世界坐标系、相机坐标系、图像坐标系、像素坐标系_rukawashan的博客-CSDN博客

SFM原理简介_海清河宴的博客-CSDN博客_sfm

Sfm方法过程及原理_清楼小刘的博客-CSDN博客_sfm原理

计算机视觉——SFM与三位重建_Nikki_du的博客-CSDN博客

代码推荐

https://github.com/alyssaq/3Dreconstruction

4、详细介绍MVS算法。

基于MVS的三维重建算法学习笔记(一)— MVS三维重建概述与OpenMVS开源框架配置_右边的口袋的博客-CSDN博客

稠密点云重建MVS——基于多视角深度图像_A晨的博客的博客-CSDN博客

代码推荐

GitHub - cdcseacave/openMVS: open Multi-View Stereo reconstruction library

三维重建开源代码汇总【保持更新】_三维重建代码源码开源_李迎松~的博客-CSDN博客

地形数据测量是许多地貌研究应用程序的基本方面,尤其是那些包括地形监测和地形变化研究的应用程序。然而,大多数测量技术需要相对昂贵的技术或专门的用户监督。 MotionSfM)摄影测量技术的结构通过允许使用消费级数码相机和高度自动化的数据处理(可以免费使用)减少了这两个限制。因此,SfM摄影测量法提供了快速,自动化和低成本获取3D数据的可能性,这不可避免地引起了地貌界的极大兴趣。在此贡献中,介绍了SfM摄影测量的基本概念,同时也承认了其传统。举几个例子来说明SfM在地貌研究中的应用潜力。特别是,SfM摄影测量为地貌学家提供了一种工具,用于在一定范围内对3-D形式进行高分辨率表征,并用于变化检测。 SfM数据处理的高度自动化既创造了机遇,也带来了威胁,特别是因为用户控制倾向于将重点放在最终产品的可视化上,而不是固有的数据质量上。因此,这项贡献旨在指导潜在的新用户成功地将SfM应用于一系列地貌研究。 关键词:运动结构,近距离摄影测量,智能手机技术,测量系统,表面形态echnology reduces both these constraints by allowing the use of consumer grade digital cameras and highly automated data processing, which can be free to use. SfM photogrammetry therefore offers the possibility of fast, automated and low-cost acquisition of 3-D data, which has inevitably created great interest amongst the geomorphological community. In this contribution, the basic concepts of SfM photogrammetry are presented, whilst recognising its heritage. A few examples are employed to illustrate the potential of SfM applications for geomorphological research. In particular, SfM photogrammetry offers to geomorphologists a tool for high-resolution characterisation of 3-D forms at a range of scales and for change detection purposes. The high level of automation of SfM data processing creates both opportunities and threats, particularly because user control tends to focus upon visualisation of the final product rather than upon inherent data quality. Accordingly, this contribution seeks to guide potential new users in successfully applying SfM for a range of geomorphic studies.
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值