SFM 与MVS的区别

参考问题
Structure from Motion(SFM)
Multi View Stereo(MVS)

使用开源工具pipeline:
Bundler(SFM) -> CMVS(MVS) -> PMVS2(MVS)

回答:
sfM 和MVS两者互补,它们基于不同的假设。且他们的输入也不相同。

sfM: (bundler, VisualSFM, OpenMVG)
input: 一组图片
output: 场景粗糙的3D形状(稀疏重建), 还有每张图片对应的相机参数。

sfm只能稀疏重建的原因:
sfM先从检测图像中提取2D特征(SIFT or ORB)表征。这些图像特征的表示为图像中的一个小区域(既一堆相邻像素)。
2D特征的特点:可以可靠的表示高度纹理区域或者粗糙的几何形状。
但是这些场景特征需要再整个场景中唯一(比如重复的墙纹理,难以匹配)。故而通过这些唯一的特征只能生成稀疏的mesh。当图像之间找到很多匹配项时,可以计算出图像之间的3D变换矩阵从而有效地给出两个相机之间地相对3D位置。

将MVS算法用于细化通过SfM技术获得的网格,从而产生所谓的密集重构。此算法要求每个图像的相机参数都起作用,这由SfM算法输出。由于它适用于更受约束的问题(因为它们已经具有每个图像的摄像机参数,例如位置,旋转,焦点等),因此MVS将在2D特征未正确(或无法正确检测)的区域上计算3D顶点或匹配。这就是PMVS2所做的。
PMVS如何在二维特征描述符难以匹配的区域上工作?由于您知道相机参数,因此知道图像中的给定像素就是另一图像中线的投影。这种方法称为对极几何。 SfM必须为每个描述符搜索整个2D图像以找到可能的匹配,而MVS将在一条1D线上工作以找到匹配,从而大大简化了问题。因此,MVS通常会在优化过程中考虑照明和物体材质,而SfM则不会。
但是,有一个问题:PMVS2执行相当复杂的优化,可能会非常缓慢,或者在大图像序列上占用天文数字的内存。这是CMVS发挥作用的地方,将粗略的3D SfM输出聚集到区域中。然后,将在每个群集上(可能并行)调用PMVS2,以简化其执行。然后,CMVS将把每个PMVS2输出合并到一个统一的详细模型中

SfM旨在使用结构化(但未知)的图像序列执行3D重建,而MVS是基于人类立体视觉的双视立体视觉的概括

地形数据测量是许多地貌研究应用程序的基本方面,尤其是那些包括地形监测地形变化研究的应用程序。然而,大多数测量技术需要相对昂贵的技术或专门的用户监督。 Motion(SfM)摄影测量技术的结构通过允许使用消费级数码相机高度自动化的数据处理(可以免费使用)减少了这两个限制。因此,SfM摄影测量法提供了快速,自动化低成本获取3D数据的可能性,这不可避免地引起了地貌界的极大兴趣。在此贡献中,介绍了SfM摄影测量的基本概念,同时也承认了其传统。举几个例子来说明SfM在地貌研究中的应用潜力。特别是,SfM摄影测量为地貌学家提供了一种工具,用于在一定范围内对3-D形式进行高分辨率表征,并用于变化检测。 SfM数据处理的高度自动化既创造了机遇,也带来了威胁,特别是因为用户控制倾向于将重点放在最终产品的可视化上,而不是固有的数据质量上。因此,这项贡献旨在指导潜在的新用户成功地将SfM应用于一系列地貌研究。 关键词:运动结构,近距离摄影测量,智能手机技术,测量系统,表面形态echnology reduces both these constraints by allowing the use of consumer grade digital cameras and highly automated data processing, which can be free to use. SfM photogrammetry therefore offers the possibility of fast, automated and low-cost acquisition of 3-D data, which has inevitably created great interest amongst the geomorphological community. In this contribution, the basic concepts of SfM photogrammetry are presented, whilst recognising its heritage. A few examples are employed to illustrate the potential of SfM applications for geomorphological research. In particular, SfM photogrammetry offers to geomorphologists a tool for high-resolution characterisation of 3-D forms at a range of scales and for change detection purposes. The high level of automation of SfM data processing creates both opportunities and threats, particularly because user control tends to focus upon visualisation of the final product rather than upon inherent data quality. Accordingly, this contribution seeks to guide potential new users in successfully applying SfM for a range of geomorphic studies.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值