--《追问人工智能-从剑桥到北京》读后感
本书中人工智能的未来发展方向便是人机融合,即超越人机交互,将人类的智慧与机器进行融合,让机器能够真正产生“智能”,像“同伴”一样与人类进行协作。现如今,人机融合的一大瓶颈便是对机器添加“感性”。机器的执行是编译好的,做出的行为也是人类为其提前编写的,它目前是无法做出主动的独立判断的意向活动的。为了突破这样的瓶颈,人类仍需要更多地感知、理解自身的智能并将其运用在机器上。而这“运用”是需要超越数学算法的。数学算法是逻辑的,逻辑是有他的极限的。叔本华曾说:“在计算开始的地方,理解便终结了。”虽然本人的数学并不好,但我认为数理逻辑有些是被动解决有确切目标的问题,无法回答涉及情理或者无解的问题。比如人无法用逻辑推出诸如“电车悖论”“老婆和老妈只能救一个救哪个”的问题答案,因为这答案基于回答的人的“价值观”,又或许就不存在答案。而这就是为什么数理逻辑已经不能满足人工智能发展的原因。
书中多次通过休谟之问提醒读者:现如今要想出如何从”being”推出”should”,也就是如何从客观的物质中推出主观的意向。可惜的是,人类对于“得意忘形”的能力似乎运用得太过熟练自然,反而使得认识、理解这一能力的难度大大加大了。
文中曾经提到目前情感分类相关的数据库仍然存在短板,需要更多样本数据,尤其是婴幼儿及儿童数据库的建立。我认为在认知模型上同理可以向婴幼儿靠拢,成年人的智能已经织成了一张复杂的网,而儿童仍处在智能的建立过程中,他们仍会用较为基础的感知去理解知识,去理解人,去理解这个世界,而这是我们需要向儿童学习的。就像《小王子》中所说的:“所有的大人都曾经是小孩,虽然,只有少数的人记得。”我们都是从呱呱坠地、一无所知的状态一步步构成一个智能的独立的成年人的。若我们能找到并理解孩子最初感知这个世界的方式并运用在机器上,那么机器个体产生智能的第一步就迈出去了。
哲学的英文为philosophy,其大意是爱智慧,而非智慧本身,这一认识是十分值得敬佩的,因为它并没有自大地称呼自己就是人的“智慧”。哲学会去研究人的智能是什么、从何而来以及怎么作用的,这估计会是一个人穷尽一生,人类种群或许直到灭绝都会思考的问题。机器缺少“我”的概念,缺少了智能原点,但“我”的机理对于人自身来讲也是很难去理解的,更不用说给机器一个了(这时候只能感谢大自然/神明的鬼斧神工了)。那么人只能退而求其次,缩小范围,从人有迹可循的方面来“高攀”智能。由此诞生了现如今流行的三大主义:符号主义、联结主义与行动主义。
虽然现在分析来它们都有所限制,但对人工智能的启程以及至今的蓬勃发展起了决定性的作用。人是能够用合作式的盲人摸象这样碎片化感知去尝试理解事物的本质的。于是我猜想,机器不主动,也在于它不会对自身的“利益”、自身的“存在”甚至自身的“安危”担心,在按下开关前,机器也不会多出任何的多余计算,甚至不会停下手头的工作。倘若机器虽然不能感知到自我,但却能感知到自身的某些关键量(如电量、开关),在预测到外部环境会导致这些关键量会受损的情况下机器会用各种方案(即便是事先编程好的方案)进行学习,避免关键量受损,那从表征上来看,这个机器已经会“怕”了。
高中生物书中写道:“生命最基本的目的在于生存与繁殖。”人的学习也包括在生存内,也是由于畏惧死亡,而死亡也时时刻刻威胁着人类。因此我认为这样的刺激是推动人主动学习的原因之一,或许也能运用到机器上。想要去主动学习,机器也需要对知识进行过滤记忆并且自发地对事物的学习建立模型。对于知识的过滤,我认为遗忘和注意力是必要的。机器的存储与人不同,它限定了一个固定的空间,因此机器自发学习必须解决机器信息爆炸的问题。对于获取的数据,机器必须能在接收和记忆的过程中进行过滤删减甚至覆盖,比如说只接收预测结果还不足够准确的物体的信息进行训练,对学习错误的部分也需要删除覆盖处理。自发地学习需要机器自己主动地去建立新的感知过程。人在学习之后,学习目标会变为记忆的一部分,也就是说学习的结果会变为训练学习的一部分,后来我读到循环神经网络RNN时感觉已经很接近了。然而我认为还不足够。RNN仅是建立了单一学习过程的闭环,而人的学习不仅是一维的,至少应该是多模态学习,且人能自定义建立新的模态进行学习,并且还能和原先的其他模态融合学习。
百闻不如一见,人从“一见”的瞬间建立了对于该事物更加实在的模态,并且能与原先“百闻”的模态相匹配。这也就是人在真正见到文章中的名胜古迹会表达“原来如此”或“不过如此”的评论。在这些之前,机器仍需要科学的可实施的感知环境的模型,现今担起大任的就是态势感知。态势感知由美国著名女科学家Mica Endsley提出。态势感知就是在一定的时间和空间内对环境中各组成部分的感知,理解,进而预知这些成分的随后变化状况。我个人认为这是十分了不起的,她让感知模型“动“了起来。感知不仅仅是对此时此刻的感觉,态势感知将机器的感知推向了理解与预测。从直观感觉起来,这与人的感知流程已经很相似了。
态势感知,Situation Awareness,这个翻译是十分贴切的。态势感知可以被拆分开理解,中文真是有趣。态是当前的状况,是客观性的物质的;势是未来的发展趋势,是意向的主观的;感是感觉;知是建立联系,学习推理。书中提到人是势多态少,机是势少态多,但我认为或许人仍不满足于目前的势,更是希望势向未来的态转化。
家中有人学过四柱八字算命,算是《易经》的一个分支。其中的原理机制很像公式:通过人出生的生辰八字与当下流年大运相匹配,可以得出对应时间段的状态,而这个状态不会单纯的判断好坏,如伤官旺意味着情绪抒发/情绪化,个人认为算是一种人与环境(时间)的关系。算命虽然在如今是迷信的,但我认为又或许早在远古时期,人们就用自己的方式总结了人与环境间的关系规律。
态势感知如今已经被应用在各种领域中,此时便提出了深度态势感知。深度态势感知的定义很有意思:对于态势感知的感知。在最初读的时候感到十分困惑。困惑的原因主要有两点:一是当时认为是对自身态势感知的感知;二是没能理解深度态势感知在机器上如何运用。随着阅读的进行,读到了“当下深度态势感知还只属于人“以及”深度态势感知是双向甚至多向的交互换位融合“让我茅塞顿开。这就好似揣度他人/机心思,预判对面的预判,”算计“他人/机的内在预测输出。
书中写道不期望深度态势感知未来会有如何详尽的解释,现在这样的留白反而增添了韵味。确实妙哉。游戏中的人工智能是人工智能的“果蝇“,我认为同时也是人机交互提升的目标。打游戏是一项现代人的重要娱乐活动,其参与量大,反馈速度快,确实是一个很好的实验场所。著名的AlphaStar在星际争霸2中也斩获了十分优秀的成绩,以10-1的成绩击败专业选手。与此同时,人们也会期望一些复杂操作会像游戏里一样简单。一款玩得舒服的游戏,其人机交流方面同样令人感到舒适。拿即时战略游戏来说,人只能实时观测到自己的屏幕和小地图,对于一个新手来讲,受到攻击、建造完成的提示音就变得十分有效;对于一个老手来讲,对于地图和单位的分布有一定把握,键盘的快捷键便成为了指挥的利器。游戏中的许多对便利的需求也是人机融合可以学习的。玩家若是能挑出系统的毛病而非适应系统,在此方面进行改进,至少在人机交流方面是一个进步。
人工智能技术无处不在,未来功能也会更加强大,在机器仍未出现感性前,我们需要人来规定限制它的伦理道德。人工智能的伦理道德是比较与传统相悖的,比如没有了传统意义上的“故意“。大众对于人工智能的认识有限,会出现夸大其词的言论,即使人工智能技术距那言论仍存在很远的距离。人来修订的伦理道德也会有安抚大众的效用,更会让研究人员对未来人工智能的发展引发思考。因此,防患于未然(无论忧患是来自人还是机),人工智能的伦理道德都是必要的。人工智能发展需要革命性的变化,需要一种跳脱出数字的方式。目前我们的知识储备是不足以解决这样的根本性问题的,在此仅提出曾做过的猜想。
我认为想要自主进化,需要未知。孔子曾说:“知之为知之,不知为不知,是知也“。人在被问及是或否问题时,答案或许不止是yes 或no,至少还有个”不知道“,但人也不会因为自己”不知道“而停下,反而会因为”不知道“继续去探寻新的知识或者新的方法。但这也只是增加了一个简单状态机而已,未能解决数字的问题。我想到的最感性的东西或许就是随机数了,但是会有范围并与环境相匹配。人在遇事的时候会高兴,会伤心,但没什么事的时候会保持平常心。而情绪或许会对我们的行为做出对应的影响,比如高兴的时候办事快。但这个范围实在是很难界定,而且未能解决动机问题。人工智能仍在发展,在感情感性方面的研究也不会停歇。或许人工智能会像它的启程一样,从侧面慢慢摸索智能,让某一感性侧面(如感情)逐步走向感性,这也是一种可能性。未来的发展,人也只能预测,预测有误也是一种惊喜。我能做的是多解析自己,多观察他人,最后设法应用在机器上,这是人工智能学科的乐趣之一,也是尽人事(态)听天命(势)的一部分。
人,通过特定奖惩的强化,常常可以形成机器化