元·认知·人机环·渔樵耕读

    元是认知之始的元素。一元为being,多元为should,除了多元之外,还有变元,随机应变的元。多元认知如何形成一元认知的?即人们是如何把多种逻辑压入到一次逻辑推理过程中的呢?这是智能领域的研究梗!随之会衍生出了这样一些问题:人们是如何把多种态、势压入到一次感、知过程中的呢?人们是如何把多种计算压入到一次算计过程中的呢?

    第一次数学危机称为毕达哥拉斯悖论(信奉“万物皆数”的信条,号称任何线段长度都可表示为两个自然数之比,毕达哥拉斯悖论是希帕索斯发现的,他发现了直角边长为1的等腰直角三角形斜边长度不是自然数之比。)、第二次数学危机称为贝克莱悖论(1734年爱尔兰主教贝克莱提出:在牛顿和莱布尼茨求导数过程中,dx既是 0又不是 0,这就是贝克莱悖论。)、第三次数学危机称为罗素悖论(集合R本身既是 R 的元素,又不是 R 的元素。)。

    这三次危机的一致性在于“是”与“不是”的悖论,与量子物理的“猫”一样,与文学的“to be or not to be”相似,与东方思想中的“是非之心”相关,与经济行为中的“A与非A”异曲同工。“是”与“不是”即为一元,其相互间的转化即为变元,其衍生出的“应”即为多元。如A是一元,A转化为B是变元,A应为B或C或D……为多元。逻辑压缩、人与隐形系统、计算-算计(计算计)依然成为未来智能领域的研究重点和难点。算计是具有领域经验人面对较复杂问题的综合计算过程,最简单的算计形式就是态势感知的正反计算,最复杂的算计形式就是多种态势感知的图式同化顺应平衡。目前各种棋类中的人机大战,本质是衡量机的计算与人的算计之战,可惜的是:人们常常把棋手的算计流程单纯地看成了计算过程,更有甚者把机器的计算过程看成了棋手的算计流程。计算涉及事实性人机环境系统(事图)问题,算计则更多涉及价值性人机环境系统(意图)问题,而事实与价值常常会出现不一致甚至是矛盾,计算计就是事实、价值的混合性人机环境系统问题,而且不同粒度的计算计模型是不同的。如何说计算中含有贝叶斯(结论随新数据的输入而改变),那么算计就涉及锚定论(结论很难随着新数据的输入而改变),孟晚归舟也许就是一个典型的中美博弈中计算计案例。

    智能领域的瓶颈和难点之一是人机环境系统失调问题,具体体现在跨域协同中的“跨”与“协”如何有效实现的问题,这不但关系到解决各种辅助决策系统中“有态无势”(甚至是“无态无势”)的不足,而且还涉及到许多博弈辅助决策体系“低效失能”的朔源。尝试把

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值