2020年至2023年美国陆续成立了25个国家人工智能研究中心,涉及智能基础和受使用启发两大类别下的多个研究主题。通过对其中具有代表性的中心进行梳理和介绍,为读者了解其战略定位、研究布局、组织运行等进展提供参考。分期介绍安排如下:
领域 | 代表机构 | |
1 | 人工智能的基础理论 | 1.1 NSF AI Institute for Foundations of Machine Learning(IFML)机器学习基础研究智能中心 1.2 AI Institute for Artificial and Natural Intelligence (ARNI) 人工智能与生物智能研究中心 1.3 2024-2025财年计划成立的加强人工智能中心 |
2 | 可信赖的人工智能 | 2.1 NSF AI Institute for Research on Trustworthy AI in Weather, Climate, and Coastal Oceanography(AI2ES) 天气、气候和沿海海洋学可信人工智能研究中心 2.2 NSF Institute for Trustworthy AI in Law & Society (TRAILS) 法律与社会可信人工智能研究中心 (关注技术治理) |
3 | 智能与基础科学交互 | 3.1 NSF AI Institute for Artificial Intelligence and Fundamental Interactions(IAIFI)人工智能和基础交互研究中心 3.2 NSF AI Institute for Dynamic Systems NSF人工智能动态系统研究中心 |
4 | 智能优化的理论和实践 | 4.1 NSF AI Institute for Learning-Enabled Optimization at Scale-TILOS 人工智能大规模学习优化研究中心 4.2 NSF AI Institute for Advances in Optimization(AI4OPT)人工智能优化运营研究中心(供应链、决策) |
5 | 人工智能与计算机和网络系统的互促 | 5.1 NSF AI Institute for Future Edge Network and Distributed Intelligence (AI-EDGE)NSF 未来边缘网络和分布式人工智能研究中心 5.2 AI Institute for Agent-based Cyber Threat Intelligence and Operation (ACTION)基于代理的网络威胁智能响应研究中心 |
6 | 智能加快科学和工程突破 | 6.1 NSF AI Institute for Molecular Discovery, Synthetic Strategy, and Manufacturing (NSF Molecule Maker Lab Institute) MMLI 分子发现、合成策略和制造研究中心(分子制造实验室,MMLI) 6.2 2024-2025财年计划成立的赋能天文科学智能中心和赋能材料研究智能中心 |
7 | 智能提升农林和生态可持续性 | 7.1USDA-NIFA AI Institute for Next Generation Food Systems(AIFS)下一代食品系统人工智能研究中心 7.2NSF AI Institute for Intelligent Cyberinfrastructure with Computational Learning in the Environment (ICICLE) NSF 环境中具有计算学习能力的智能网络基础设施研究中心 |
8 | 智能提升经济社会发展韧性 | 8.1 NSF AI Institute for Collaborative Assistance and Responsive Interaction for Networked Groups (AI-CARING) 网络群体协助和响应交互人工智能研究中心(智能护理) 8.2 National AI Institute for Adult Learning and Online Education (AI-ALOE) 国家成人学习和在线教育人工智能研究中心 8.3 AI Institute for Societal Decision Making (AI-SDM) 人工智能社会决策研究中心 |
第一期 人工智能的基础理论
相关研究中心开展的人工智能基础理论研究,旨在理解思维和智能行为背后的内在机制、为其在机器/系统中的实现提供新的知识或方法。已设立和计划设立的多个研究中心,既涵盖了机器智能、生物智能等现阶段主要技术路线的深耕,也为探索更加高效、稳健和符合人类期望的下一代人工智能提前谋划布局。
一、NSF AI Institute for Foundations of Machine Learning(IFML)
机器学习基础研究智能中心
NEWS
战略定位
PART/1
IFML于2020年由美国国家科学基金会(NSF)创立,旨在为未来十年的人工智能创新开发关键的基础工具。中心网址:https://www.ifml.institute
IFML深入挖掘机器学习的基础,以影响实用智能系统的设计。中心专注于人工智能的主要理论挑战,包括用于深度学习的下一代算法、神经架构优化和高效稳健的统计。中心研究人员创造新的算法,可以帮助机器在飞行中学习,在现实生活中遇到人和物体时改变他们的期望,甚至可以从对手故意操纵的数据集中尝试恢复。此外,主要的在线课程和研究将为美国数千名学生和专业人士带来前沿的人工智能工具。
NEWS
建设条件
PART/2
资金来自NSF,5年共2000万美元。
研究中心由德克萨斯大学奥斯汀分校牵头,华盛顿大学、威奇托州立大学和微软研究院等机构共建。
图 IFML成员空间分布图(绿色点为牵头机构德克萨斯大学奥斯汀分校)
NEWS
科研布局
PART/3
中心研究重点是将数学工具与现实世界目标相结合的核心基础挑战,以加快智能技术进步。同时,中心选择了视频、成像和导航三个受使用启发的研究领域直接推进应用。
01
深度学习的高级算法
中心创建了快速、可证明有效的工具来训练神经网络和搜索参数空间,开发新的理论来严格解释成功的启发式方法。例如,端到端统计学习课题,提出了一种名为DIFFRAC的判别聚类方法,即使在完全无监督的状态下也能学习强大的特征表示,甚至可以利用少量的标记数据来改进特征表示并获得更好的复杂数据集聚类。又如,中间层优化课题,研究提出了中间层优化(ILO)方法,可用于解决广泛的逆问题,包括修复、去噪、超分辨率和压缩传感。
02
使用动态数据学习
伴随数据集的不断发展,中心研究新的算法和模型,可以在训练和测试时结合上下文和适应扰动变化。例如,从补丁到图片(PaQ-2-PiQ)的研究,引入了迄今为止最大的主观图像质量数据库,包含大约4万张真实世界的扭曲图片和12万个补丁,并收集了大约4万个人对图像质量的判断,可生成全局到局部推断以及局部到全局推断(通过反馈)的图像质量预测架构。又如,利用共享表述进行个性化联邦学习研究,提供了一种单个设备(如智能手机、手表)和中央服务器有效通信的方法FedRep,通过设备和服务器之间模型的传输、更新和迭代,既能利用中央服务器的大量数据从而解决单个设备缺乏算据和算力的问题、又能保护单个设备的客户隐私。
03
利用数据中的结构
研究在数据集中定义并发现丰富的数学结构,以改进下游建模和优化。例如,通过连续时间梯度加快策略学习速度的研究,构建了一个名为连续时间策略梯度(CTPG)的估计器,能够在各种实验环境中,用相对低成本的估计值代替昂贵的反向传播算法(BPTT)得到的估计值,从而更快更高效的学习策略。
04
优化实际目标
研究开发了原则性方法用于自动满足复杂的约束条件,并根据安全机器人导航的需要,在现实世界中处理来自用户的交互式反馈。例如,自适应规划器参数学习 (APPL)是一种在现有导航系统之上设计机器学习组件的范例,可在部署期间动态微调规划器参数,以适应不同的场景并实现稳健高效的导航性能。APPL 与底层导航系统无关,继承了经典导航系统的安全性和可解释性优点,也赋予了系统更好的灵活性和适应性。
NEWS
组织运行
PART/4
IFML团队包括来自德克萨斯大学奥斯汀分校,华盛顿大学,威奇托州立大学和微软研究院的研究人员,中心合作机构涵盖政府部门、高校、企业等,包括知名的Youtube、Netflix等企业。
图 IFML合作机构
根据中心官网显示,截至2023年5月,中心拥有领导团队3人,高级研究成员约40人,以及9位咨询委员会专家
表 IFML中心领导和部分高级研究人员
序号 | 人员 | 中心职务 | 原单位 | 研究领域 |
1 | Adam Klivans | 主任 | 德克萨斯大学奥斯汀分校计算机科学教授 | 深度学习,图形模型 |
2 | Alex Dimakis | 联合主任 | 德克萨斯大学奥斯汀分校电气与计算机工程教授 | 信息论、编码理论、无监督机器学习 |
3 | Byron Boots | 高级研究员 | 华盛顿大学计算机科学与工程副教授 | 使用动态数据学习,利用数据中的结构 |
4 | Sébastien Bubeck | 高级研究员 | 微软研究院高级首席研究经理 | 机器学习理论、优化、统计机器学习 |
5 | Sham M. Kakade | 高级研究员 | 华盛顿大学计算机科学与工程教授 | 强化学习和控制,表示学习,深度学习 |
6 | Jay Reddy | 高级研究员 | 戴尔科技集团 | 工程分析,基础架构解决方案 |
教育和劳动力培训。IFML通过与现有合作伙伴关系,围绕机器学习等主题开展教育和培训课程。例如,面向高中教育工作者的人工智能教学模块,教师可以轻松访问和集成八节课NLP教学模块,向学生介绍自然语言处理等课程。又如,中心正在开发一个完全在线的人工智能理学硕士课程,由德克萨斯大学奥斯汀分校提供计算机科学和数据科学两个在线硕士学位,以满足智能劳动力的需求。
图 NLP教学课程列表(地址https://www.ifml.institute/node/368)
二、AI Institute for Artificial and Natural Intelligence (ARNI)
人工智能与生物智能研究中心
NEWS
战略定位
PART/1
ARNI中心由NSF资助,成立于2023年,旨在将人工智能系统取得的重大进展与人类对大脑理解的革命联系起来。中心网址建设中,临时网页:https://www.engineering.columbia.edu/nsf-ai-institute-artificial-and-natural-intelligence
基于大量数据快速发展的人工智能方法和系统才刚刚开始影响神经科学,ARNI将促进神经科学、认知科学和人工智能之间跨学科研究新范式,点燃神经科学和人工智能的进步,这将加速三个领域的进展,并在未来十年扩大对社会的变革性影响。
NEWS
建设条件
PART/2
图 ARNI成员空间布局图
ARNI由NSF以及负责情报和安全的国防部副部长办公室合作资助,5年共2000万美元。
ARNI由哥伦比亚大学(工程学院)牵头,目前已经组建了世界上最强大的理论神经科学和基础机器学习研究团队。合作高校和科研机构包括贝勒医学院、纽约市立大学、哈佛大学、普林斯顿大学、霍华德休斯医学研究所、米拉魁北克人工智能研究所、塔斯基吉大学、宾夕法尼亚大学等。行业和外展合作伙伴包括亚马逊、DeepMind、谷歌、IBM、Meta和纽约科学馆等。
NEWS
科研布局
PART/3
根据已公开信息,ARNI中心研究重点如下。
01
弥合人工神经网络和生物神经网络之间的差距
ARNI 旨在克服当前人工智能的局限性,同时将现代智能引入神经科学、基础机器学习和认知科学。ARNI将弥合目前人工网络和生物网络之间的巨大差距,并为广泛多样的应用腾出空间:工业领域,例如稳健、可解释的医疗决策和更智能的家庭助理;社会应用领域,例如更好的社会安全网和辅助多式联运系统,以帮助弱势群体;科学发现领域,例如提供有关大脑功能的假设,以及创建强大的工具以从海量数据中提取见解。
02
值得信赖的系统
强大而公平的机器学习方法,对于使用新的人工智能工具来改善社会至关重要。例如,开发可解释的模型通常基于因果方法,鉴于我们对大脑的研究,这些模型以认知为基础,将促进可信赖系统的发展;系统可以用人类理解的术语向最终用户解释其推理,这在医疗保健、法律和支持弱势群体等高风险应用中至关重要。
NEWS
组织运行
PART/4
ARNI将由首席研究员(PI)Richard Zemel,以及Kathleen McKeown,Christos Papadimitriou(哥伦比亚大学工程学院),Liam Paninski(哥伦比亚大学朱克曼研究所以及统计和神经科学系)和Xaq Pickow(莱斯大学贝勒医学院)领导。
各首席科学家和团队汇集了来自各种学科的专业知识,包括人工智能、理论计算机科学、统计学、神经科学、物理学和认知科学。他们将与一个庞大的研究团队合作,解决当前机器学习系统的局限性和挑战,包括使用有限的数据进行学习,对因果关系和不确定性的推理等,同时也探索我们对大脑如何计算和学习的理解。
劳动力和教育培训。中心将为本科生和研究生以及博士后实习生提供教育和研究机会,包括人工智能、神经科学和认知科学等学科领域。纽约科学馆等外展合作伙伴将帮助公众了解相关新发现和进展,并向下一代学生教授关键技能。
三、Strengthening AI
加强人工智能研究中心(2024或2025财年计划成立)
NEWS
研究背景
PART/1
可以通过一个连续视角来看待人工智能系统的发展,如从狭义智能到广义智能、从弱人工智能到强人工智能。弱/狭义人工智能擅长执行编程(或训练)的特定任务,在过去的几十年里,虽然相关系统在越来越多的领域中有远超预期的表现,但仍然具有脆弱性、容易受到操纵或反智能策略等影响、或产生与人类价值观期望不一致的输出。相比之下,强人工智能是创造与人类一样熟练学习和思考的智能系统的理想目标,有望在各种复杂问题中有效发挥作用、从有限领域中获得新的概念理解、并适当地适应人类用户的期望。迄今为止还没有强人工智能的例子被证明,如果我们希望未来的人工智能系统足够强大、并使这些技术与社会的预期用途保持一致,就需要加强它们。
NEWS
研究主题目标
PART/2
相关主题旨在促进下一代人工智能系统的发展,系统通过展示弱/狭义人工智能的高性能和强人工智能的普遍适应性而得到加强,以提供更好的有效性、稳健性和一致性。该主题下资助的研究机构将在以下三个目标中加强人工智能,相关方法可能包括但不限于神经符号方法、混合集成架构或多表征学习方法。
01
可落地(Grounding)。系统必须理解其推理和操作的概念,允许系统展示其输出和抽象概念之间的联系,该目标下系统能够了解其风险和局限性、快速适应新领域、并能够抵制恶意操纵。
02
指导性(Instructiblity)。加强的人工智能系统能够适当改变其行为,以响应专家甚至非专家用户提出的明确反馈,从而对人类实施更有效和值得信赖的援助。
03
期望一致(Alignment)。加强的人工智能系统,其操作应与某个领域中客观真理的要求、社会期望以及人类操作意图保持一致。
一 END 一
免责声明
文章内容系作者个人观点,文章观点不代表本机构立场。图片均来自于网络。如有任何异议,欢迎联系我们!
关于我们
About Us
稻香湖智库秉承“站得高看得远”理念,汇聚来自知名高校、科研院所的专业智慧从事科技战略研究,以学贯古今为追求,以经纶济世为理想,致力于打造中国智能科技权威智库平台。转载开白请直接私信,其他合作意向请联系“小稻”(13681375652,微信同号)
文章推荐:
3. 【深度】“会聚工程”2020和2021中的关键系统和技术-上篇
点击名片 关注我们------------------