HME System and new quality productive forces

4647de66be0a3e0c6d0e5a4ba48948f0.jpeg

▲Human-machine interaction Photo: Blue Planet Studio/TUCHONG

By LIU WEI

New quality productive forces not only simply enhance production efficiency but, more importantly, seek to achieve sustainable development of productivity by altering production methods, organizational structures, and relationships through innovation and technological advancements. Each sci-tech revolution brings about new social divisions of labor. As a pivotal driving force behind the current wave of sci-tech revolution and industrial transformation, artificial intelligence (AI) is widely acknowledged to have profound implications for socioeconomic development.

The contemporary form of human-machine division of labor differs from past redistributions merely based on physical or intellectual abilities. It necessitates consideration of the integration of human, machine and environmental advantages. This not only implies changes in work practices, occupational structures, and modes of thinking, but also accelerates the process of digitalization and intelligentization in various industries. With the continuous development and widespread application of AI, it can be expected that new quality productive forces will become more extensive and profound. Consequently, there is a pressing need for continuous learning and adaptation to these changes.

Generating new quality productive forces

The Human-Machine-Environment (HME) System refers to the interactive system formed by the interaction between humans and machines. It encompasses not only the process of humans using machine tools but also the influence of machines on human behaviors and the adjustments of machine behaviors made by humans. Within the HME System, there exist interactions and influences among the three factors: humans, machines, and the environment.

The development of the HME System can promote the improvement of productivity levels. The advancement of this system has led to the automation and intelligence of many tasks in the production process, greatly improving production efficiency and quality. With the development of the HME System, the demand for human labor in the production process may decrease, leading to phenomena such as human-machine substitution, thereby changing the relationship between labor and capital in the traditional production relationship. At the same time, the development of the HME System may change the status and power relations of different participants in the production process. In addition, it may give rise to new issues of property rights and distribution of benefits, necessitating the readjustment and establishment of corresponding production relations. Therefore, the development of the HME System will inevitably lead to the emergence and adjustment of new production relations.

The HME System generates new quality productive forces, with several examples as follows: the internet and e-commerce, AI, virtual reality and augmented reality. These new production tools have altered traditional work methods and production relations. With the continuous sci-tech advancement, the interaction between humans and machines will become increasingly close and complex. We can expect that the HME System will bring forth more innovation and changes.

Changing organizational structures

The introduction of new technologies often influences organizational structures, and intelligent technologies within the HME System can often mutually trigger organizational changes. Especially with technologies like AI, their introduction may spur the emergence of new organizational structures and functions.

The emergence of new organizational structures can provide an important impetus for technological development and innovation. When an organization changes its structure and working methods, it may inspire employees to devise creative solutions and encourage them to explore new technologies and approaches. New organizational structures are typically more flexible and decentralized, encouraging teamwork, communication and knowledge sharing. This open culture helps create an innovative atmosphere, stimulating employees’ creativity and innovative thinking. In addition, new organizational structures may also prioritize the intelligence of the HME System. Therefore, there exists a mutually reinforcing relationship between new organizational structures and technologies. New organizational structures can stimulate employees’ innovation and creativity, driving the development of new technologies. In turn, new technologies can provide organizations with more opportunities for innovation and development, further promoting the evolution of organizational structures.

Leveraging multiple entities

Relevant government departments should formulate policies and regulations to protect personal privacy and data security while promoting the sustainable development of AI. They should also allocate funds to support AI research and innovation and provide training and educational resources to ensure that everyone in society can benefit from the development of AI. Related enterprises should also actively adapt to the development of AI, investing in, researching, developing and applying AI technologies to improve productivity and competitiveness. At the same time, they should proactively consider the impact of AI on jobs and employees, actively supporting career transition and training to adapt to new job requirements. Additionally, they should prioritize data security and privacy protection to ensure the legal, compliant and responsible use of AI technologies.

Individuals, facing the wave of AI development, should pay attention to the application areas and development trends of AI and continuously enhance their skills and knowledge through lifelong learning to adapt to the new working environment. They should also maintain an open mind, be willing to embrace new technologies and changes, and actively participate in social discussions and decision-making to ensure that the development of AI is in line with human benefits and values.

The mindset embodied by the HME System emphasizes a systemic, holistic, and interactive approach. It recognizes the interdependence and mutual influence among humans, machines, and the environment, emphasizing the need to consider them as a whole rather than as separate entities. This holistic thinking, rooted in the Eastern logistic thinking, holds significant potential and prospects for applications in scientific research, engineering design, and social management. By adopting this holistic logic in various fields, it can continuously generate new quality productive forces.

Liu Wei is director of the Human-Computer Interaction and Cognitive Engineering Laboratory at Beijing University of Posts and Telecommunications.

Editor: Zhao Yuan, Wang Youran

内容概要:本文介绍了一种利用遗传算法优化BP神经网络进行回归预测的方法,并提供了完整的MATLAB程序代码。主要内容包括数据预处理、遗传算法与BP神经网络的结合、适应度函数的设计以及最终的预测结果展示。文中详细解释了如何将Excel格式的数据导入MATLAB并进行归一化处理,如何定义适应度函数来优化BP神经网络的参数(如激活函数和学习率),并通过遗传算法找到最优解。实验结果显示,在某工业数据集上,经过遗传算法优化后的BP神经网络预测精度显著提高,从原来的0.82提升到了0.91。此外,还提到了一些实用技巧,比如调整遗传代数、修改激活函数等方法进一步改进模型性能。 适合人群:对机器学习有一定了解的研究人员和技术爱好者,特别是那些希望深入了解遗传算法与BP神经网络结合应用的人士。 使用场景及目标:适用于需要快速构建高效回归预测模型的场景,尤其是当传统BP神经网络无法达到预期效果时。通过本篇文章的学习,读者能够掌握一种有效的优化手段,从而提高模型的泛化能力和预测准确性。 其他说明:代码可以直接应用于新的数据集,只需确保数据格式符合要求(Excel格式)。对于想要深入探索或改进现有模型的人来说,还可以尝试更换不同的激活函数或其他调节方式来获得更好的表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值